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Abstract

It has been documented that random walk outperforms most economic structural and time series models

in out-of-sample forecasts of the conditional mean dynamics of exchange rates. In this paper, we study

whether random walk has similar dominance in out-of-sample forecasts of the conditional probability

density of exchange rates given that the probability density forecasts are often needed in many applications

in economics and finance. We first develop a nonparametric portmanteau test for optimal density forecasts

of univariate time series models in an out-of-sample setting and provide simulation evidence on its finite

sample performance. Then we conduct a comprehensive empirical analysis on the out-of-sample

performances of a wide variety of nonlinear time series models in forecasting the intraday probability

densities of two major exchange rates—Euro/Dollar and Yen/Dollar. It is found that some sophisticated

time series models that capture time-varying higher order conditional moments, such as Markov regime-

switching models, have better density forecasts for exchange rates than random walk or modified random

walk with GARCH and Student-t innovations. This finding dramatically differs from that on mean

forecasts and suggests that sophisticated time series models could be useful in out-of-sample applications

involving the probability density.
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1. Introduction

Foreign exchange markets are among the most important financial markets in the world,
with trading taking place 24 h a day around the globe and trillions of dollars of different
currencies transacted each day. Transactions in foreign exchange markets determine the
rates at which currencies are exchanged, which in turn determine the costs of purchasing
foreign goods and financial assets. Understanding the evolution of exchange rates is
important for many outstanding issues in international economics and finance, such as
international trade and capital flows, international portfolio management, currency
options pricing, and foreign exchange risk management.

The vast literature on exchange rate dynamics has documented several important
stylized facts for nominal exchange rates. First, changes of exchange rates are leptokurtic
since their unconditional distributions exhibit a sharper peak and fatter tails than normal
distributions (e.g., Boothe and Glassman, 1987; Hsieh, 1988). Second, exchange rate
changes exhibit persistent volatility clustering: In periods of turbulence, large changes tend
to be followed by large changes; and in periods of tranquility, small changes tend to be
followed by small changes (e.g., Diebold, 1988).

A variety of sophisticated nonlinear time series models have been proposed in the
literature to capture these stylized behaviors. For example, Bollerslev (1987), Engle and
Bollerslev (1986), Baillie and Bollerslev (1989), and Hsieh (1989) show that a GARCH
model with i.i.d. Student-t innovations can capture volatility clustering in all major
exchange rates, and can explain at least part of the leptokurtosis in exchange rate changes.
Engel and Hamilton (1990) show that Hamilton’s (1989) Markov regime-switching model
can capture the ‘‘long swings’’ in several major dollar exchange rates. It also can capture
the leptokurtosis in exchange rate data, because its conditional and unconditional densities
are mixtures of normal distributions with different means and/or variances. Jorion (1988)
and Bates (1996) show that jumps can capture discontinuities in exchange rate data due to
various economic shocks, news announcements, and government interventions in foreign
exchange markets.

Although these nonlinear time series models have good in-sample performances in
capturing exchange rate data, they fail miserably in forecasting future exchange rate
changes. As pointed out in Putnam and Quintana (1994, p. 223), exchange rate movements
contain a considerable amount of noise, and the low signal-to-noise ratio in exchange rate
changes opens up wide possibilities for spurious in-sample dependence which may not be
robust for out-of-sample forecasting. Indeed, the classic paper of Meese and Rogoff (1983)
and many subsequent important studies (see, e.g., Diebold and Nason, 1990; Meese and
Rose, 1990; Engel, 1994) have shown that during the post-Bretton Woods period most
economic structural and time series models of exchange rates underperform a ‘‘naive’’
random walk model in predicting the conditional mean of major exchange rates.1 While
nonlinear time series models improve the modeling of even-ordered moments, the random
walk model (which does not attempt to capture any conditional mean dynamics) still
dominates in forecasting the conditional mean of exchange rate changes. These empirical
1Even though the dominance of the random walk model in forecasting the conditional mean of exchange rates is

widely established, there is evidence that certain time series models might have better mean forecasts. For

example, Wolff (1985) shows that a state space model for exchange rates performs better than the random walk

model used by Meese and Rogoff (1983). See also Wolff (1987).
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results cast serious doubts on the relevance of nonlinear time series models for out-of-
sample applications, despite their good in-sample performances.
In this paper, we address the important question whether some nonlinear time series

models can outperform the random walk model in out-of-sample forecasts of the
probability density of exchange rates. As argued by Diebold et al. (1998), Granger (1999),
Granger and Pesaran (2000), and Corradi and Swanson (2006a), accurate density forecasts
are important for decision making under uncertainty when a forecaster’s loss function is
asymmetric and the underlying process is non-Gaussian.2 Density forecasts for exchange
rates are useful in many economic and financial applications. For example, density
forecasts can be employed to compute probabilities of business turning points which are
important inputs for optimal business cycle turning point forecasts (Zellner et al., 1991).
For another example, financial risk management is essentially dedicated to providing
density forecasts for important economic variables, such as interest rates and exchange
rates, and then using certain aspects of the distribution such as value-at-risk (VaR) to
quantify the risk exposure of a portfolio (e.g., Duffie and Pan, 1997; Morgan, 1996; Jorion,
2000). Density forecasts also are important for valuing currency options, whose payoffs
depend on the entire probability distribution of future exchange rates. Jorion (1988), Bates
(1996), and Bollen et al. (2000) show that more realistic exchange rate models generate
more accurate currency option prices.
Our paper makes both methodological and empirical contributions to the literature on

density forecasts for exchange rates. Methodologically, we develop an out-of-sample
omnibus nonparametric evaluation procedure for density forecasts of univariate time series
models. The pioneering work of Diebold et al. (1998) shows that if a forecast model
coincides with the true data-generating process (DGP), then the probability integral
transformed data via the model conditional density, which are often referred to as the
‘‘generalized residuals’’ of the forecast model, should be i.i.d. U½0; 1�.3 While Diebold et al.
(1998) separately examine the i.i.d. and U½0; 1� properties of the ‘‘generalized residuals’’
using some intuitive graphical methods, we develop a formal nonparametric portmanteau
evaluation test for density forecasts by measuring the distance between the model
generalized residuals from i.i.d. U½0; 1�. Our approach extends Hong and Li’s (2005)
approach for evaluating the in-sample performance of a continuous-time model to an out-
of-sample forecasting context. The most appealing feature of our test is its omnibus ability
to detect a wide range of suboptimal density forecasts for stationary and nonstationary
time series processes. Moreover, we explicitly consider the impact of parameter estimation
uncertainty on the evaluation procedure, an issue typically ignored in most existing
forecast evaluation methods. We provide a simulation study on the finite sample
performances of our tests, and develop a simple and distribution-free method for
correcting the finite sample biases of the asymptotic tests.
2It is important to point out that there is a long tradition in the Bayesian forecasting literature of explicitly using

predictive densities (see, e.g., Harrison and Stevens, 1976; West and Harrison, 1997). The so-called ‘‘prequential’’

Bayesian literature also features density forecasts prominently (see Dawid, 1984). For exchange rates, Putnam and

Quintana (1994) and Quintana and Putnam (1996) have considered multivariate state space models for a vector of

exchange rates and provide dynamic Bayesian predictive density forecasts for a portfolio of exchange rates. Based

on these forecasts, they consider portfolio choices and trading strategies involving multiple currencies.
3The term ‘‘generalized residual’’ has been widely used in the econometrics and statistics literatures. For

example, see Cox and Snell (1968) and Gourieroux et al. (1987).
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Empirically, we provide probably the first comprehensive analysis of the density
forecasting performances of a wide variety of nonlinear time series models for intraday
high-frequency Euro/Dollar and Yen/Dollar exchange rates. Specifically, we consider
density forecasts using random walk, GARCH/EGARCH, and jump-diffusion models
with either N(0,1) or Student-t innovations. To examine the contribution of serial
dependence in higher order conditional moments, we also examine some nonlinear time
series models with non-i.i.d. innovations: a regime-switching model with state-dependent
GARCH process and Student-t innovation, and Hansen’s (1994) autoregressive
conditional density (ARCD) model. These models, whose conditional densities cannot
be fully described by the first two conditional moments, have been rarely applied to
exchange rate data in the literature, particularly in an out-of-sample setting. While density
forecasting has become a standard practice in many areas of economics and finance (e.g.,
Clements and Smith, 2000; Corradi and Swanson, 2006a; Tay and Wallis, 2000),
applications to exchange rate data are still rare. One notable exception is Diebold et al.
(1999), who consider forecasts of joint densities of exchange rates using a bivariate
RiskMetrics model. Our paper naturally fills the gap in this literature.

Our analysis shows that some sophisticated models provide better out-of-sample density
forecasts than the simple random walk model (even augmented with GARCH and
Student-t innovations to account for the well-known volatility clustering and heavy tails of
Euro/Dollar rates). For Euro/Dollar, it is important to model the heavy tails through a
Student-t innovation and the asymmetric time-varying conditional volatility through a
regime-switching GARCH model for both in-sample and out-of-sample performances;
while modeling the conditional mean and serial dependence in higher order conditional
moments (e.g., conditional skewness) is important for in-sample performance, it does not
improve out-of-sample density forecasts. Overall, a regime-switching model with zero
conditional mean, regime-dependent GARCH, and Student-t innovation provides the best
density forecasts for the Euro/Dollar rate, and such a model is optimal in the sense that it
cannot be rejected by the data. For the Yen/Dollar rate, it is also important to model
heavy tails and volatility clustering, and the best density forecasting model is a RiskMetrics
model with a Student-t innovation. However, this best forecast model for Yen/Dollar is
still suboptimal, suggesting that there still exists room for further improvement in
forecasting the density of Yen/Dollar.

Our empirical results on density forecasts dramatically differ from those on mean
forecasts. The exchange rate dynamics is completely characterized by its conditional
density, which includes not only the conditional mean but also higher order conditional
moments. A model that better forecasts the conditional mean does not necessarily better
forecast higher order conditional moments. Our results show that the general perception in
the literature that simpler models always do better in out-of-sample applications does not
apply to density forecasts. By capturing volatility clustering and time-varying higher order
conditional moments, some nonlinear time series models can indeed perform well in
forecasting the conditional density of future exchange rates. Our results suggest that
certain sophisticated nonlinear time series models are indeed useful in out-of-sample
applications that involve the entire probability density.

It should be noted that our empirical comparative study has excluded one important
class of dynamic Bayesian models (see Zellner, 1971 for introduction to Bayesian
econometrics). The dynamic Bayesian approach can provide predictive density models
with time-varying parameters that adapt to the structural changes and regime-shifts. This
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approach has been proven successful in global macroeconomic forecasting (Zellner et al.,
1991) and exchange rate forecasting (Putnam and Quintana, 1994; Quintana and Putnam,
1996). It would be interesting to compare the relative performance between dynamic
Bayesian predictive density models and the best density forecast models we find in
forecasting exchange rate changes.
The paper is planned as follows. In Section 2, we consider a portmanteau test for

evaluating out-of-sample density forecasts of univariate time series models. Section 3
provides the finite sample performance of our nonparametric tests. In Section 4, we
introduce a wide variety of time series models for exchange rates and discuss their relative
merits. In Section 5, we describe the data, estimation methods, and in-sample and out-of-
sample performances of each model. Section 6 concludes. The Appendix provides the
mathematical proof for the asymptotic theory.
2. Out-of-sample density forecast evaluation

Density forecasts have become a standard practice in many areas of economics and
finance. One of the most important issues in density forecasting is to evaluate the quality of
a forecast (Granger, 1999). In a decision-theoretic context, Diebold et al. (1998) and
Granger and Pesaran (2000) show that when a density forecast model coincides with the
true conditional density of the DGP, it will be preferred by all forecast users regardless of
their risk attitudes. However, density forecast evaluation is challenging because we never
observe an ex post density. Except Diebold et al. (1998), Berkowitz (2001), Hong (2001),
and Corradi and Swanson (2006b, c), so far there have been relatively few suitable
statistical evaluation procedures for out-of-sample density forecasts.4 To fill the gap in the
literature, we now develop a generally applicable omnibus nonparametric evaluation
method for out-of-sample density forecasts.
2.1. Dynamic probability integral transform

In a pioneering work, Diebold et al. (1998) first propose to assess the optimality of
density forecasts by examining the dynamic probability integral transform of the data with
respect to the density forecast model. Suppose fY t; t ¼ 0;�1; . . .g is a possibly
nonstationary time series governed by a conditional density p0ðyjI t�1; tÞ. For a given
model for Y t, there is a model-implied conditional density

q
qy

PðY tpyjI t�1; yÞ � pðyjI t�1; t; yÞ,

where y is an unknown finite-dimensional parameter vector, I t�1 � fY t�1;Y t�2; . . . ;Y 1g is
the information set available at time t� 1. We divide a random sample fY tg

T
t¼1 of size T

into two subsets: an estimation sample fY tg
R
t¼1 of size R for estimating model parameters

and a forecast sample fY tg
T
t¼Rþ1 of size n � T � R for density forecast evaluation. We can

then define the dynamic probability integral transform of the data with respect to the
4See Corradi and Swanson (2006a) for an excellent review of existing methods for evaluating density forecasts.

See also Corradi and Swanson (2006b) on evaluation of density as well as confidence interval forecasts.
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model forecast density:

ZtðyÞ �
Z Y t

�1

pðyjI t�1; t; yÞdy; t ¼ Rþ 1; . . . ;T . (2.1)

Following Cox and Snell (1968), we refer to fZtðyÞg as the generalized residuals of the
density model pðyjI t�1; t; yÞ. The generalized residuals defined this way also have been used
in duration analysis in labor economics (e.g., Lancaster (1990)). Diebold et al. (1998) show
that if the model pðyjI t�1; t; yÞ is correctly specified in the sense that there exists some y0
such that pðyjI t�1; t; y0Þ coincides with the true conditional density, then the transformed
sequence fZtðy0Þg should be i.i.d. U½0; 1�.

To illustrate the idea, consider the popular J.P. Morgan’s (1996) RiskMetrics model

Y t ¼
ffiffiffiffi
ht

p
�t;

ht ¼ ð1� yÞht�1 þ yY 2
t�1 ¼ ð1� yÞ

P1
j¼1y

jht�j ;

�t�i:i:d:Nð0; 1Þ;

8><
>:

where y measures the dependence of ht on past volatilities. Here, the conditional density of
Y t given I t�1 is

pðyjI t�1; t; yÞ ¼
1ffiffiffiffiffiffiffiffiffi
2pht

p exp �
y2

2ht

� �
; y 2 ð�1;1Þ.

If pðyjI t�1; t; y0Þ ¼ p0ðyjI t�1; tÞ almost surely for some y0, then

Ztðy0Þ ¼
Z Y t

�1

p0ðyjI t�1; tÞdy

¼ Fð�tÞ�i:i:d:U½0; 1�,

where Fð�Þ is the N(0,1) CDF.
The i.i.d. U½0; 1� property provides a convenient approach to evaluating the density

forecast model pðyjI t�1; t; yÞ. Intuitively, the U½0; 1� property indicates proper specification
of the unconditional distribution of Y t, and the i.i.d. property characterizes correct
specification of its dynamic structure. If fZtðyÞg is not i.i.d. U½0; 1� for all y 2 Y, then
pðyjI t�1; t; yÞ is not optimal and there exists room to further improve pðyjI t�1; t; yÞ. Thus
the quality of density forecasts can be evaluated by testing whether the generalized
residuals are i.i.d. U½0; 1�.

2.2. Nonparametric evaluation for density forecasts

In this section, we develop a nonparametric procedure for density forecast evaluation by
extending Hong and Li’s (2005) in-sample nonparametric test for continuous-time models.
For notational simplicity, put Zt ¼ Ztðy

n
Þ, where yn is the probability limit of some

parameter estimator ŷR based on the estimation sample fY tg
R
t¼1.

5 Following Hong and Li
(2005), we measure the distance between a density forecast model and the true conditional
density by comparing a kernel estimator ĝjðz1; z2Þ for the joint density of the pair fZt;Zt�jg
5It is possible to extend our asymptotic analysis to allow for rolling and recursive estimations. However, we do

not consider these possibilities here for simplicity and space.
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with unity, the product of two U½0; 1� densities, where j is a lag order.6 We further propose
a portmanteau test statistic that combines the original Hong and Li’s (2005) statistics at
different lag orders. Compared to the graphical methods of Diebold et al. (1998) that
separately examine the i.i.d. and U½0; 1� properties of the generalized residuals, our single
omnibus evaluation criterion takes into account deviations from both i.i.d. and U½0; 1�
jointly and provides an overall measure of model performance. We also explicitly consider
the impact of parameter estimation uncertainty and the choice of relative sample sizes
ðR; nÞ between the estimation and prediction samples on the evaluation procedure. These
two issues are typically ignored by most existing evaluation procedures for out-of-sample
density forecasts. The most appealing feature of this new test is its omnibus ability to
detect a wide range of suboptimal density forecasts for possibly nonstationary time series
processes.
Specifically, our kernel estimator of the joint density of the pair fZt;Zt�jg is, for any

j40,

ĝjðz1; z2Þ � ðn� jÞ�1
XT

t¼Rþjþ1

Khðz1; ẐtÞKhðz2; Ẑt�jÞ, (2.2)

where Ẑt ¼ ZtðŷRÞ, and Khðz1; z2Þ is a boundary-modified kernel function defined below:
For x 2 ½0; 1�, we define

Khðx; yÞ �

h�1k
x� y

h

� �
=
R 1
�ðx=hÞ

kðuÞdu if x 2 ½0; hÞ;

h�1k
x� y

h

� �
if x 2 ½h; 1� h�;

h�1k
x� y

h

� �
=
R ð1�xÞ=h

�1 kðuÞdu if x 2 ð1� h; 1�;

8>>>>><
>>>>>:

(2.3)

where kð�Þ is a prespecified symmetric probability density, and h � hðnÞ is a bandwidth such
that h! 0; nh!1 as n!1. In practice, the choice of bandwidth h is more important
than the choice of the kernel kð�Þ. Like Scott (1992), we choose h ¼ ŜZn�1=6, where ŜZ is
the sample standard deviation of fẐtg

T
t¼Rþ1. This simple bandwidth rule attains the optimal

rate for bivariate kernel density estimation.
We use the above modified kernel because a standard kernel density estimator gives

biased estimates near the boundaries of the data, due to its asymmetric coverage of the
data in the boundary regions. In contrast, the weighting functions in the denominators of
Khðx; yÞ for x 2 ½0; hÞ [ ð1� h; 1� account for the asymmetric coverage and ensure that the
kernel density estimator is asymptotically unbiased uniformly over the entire support ½0; 1�.
The modified-kernel approach allows us to use all the data in estimation. Otherwise,
significant amounts of data in the boundary regions might have to be discarded due to the
boundary bias problem.7 For financial time series, one may be particularly interested in
the tail distribution of the underlying process, which is exactly contained in (and only in)
the boundary regions! Our approach also has advantages over the so-called jackknife
6One advantage of this approach is that since there is no serial dependence in fZtg under correct model

specification, nonparametric joint density estimators are expected to perform well in finite samples. There is also

no asymptotic bias for nonparametric density estimators under the null hypothesis of correct model specification

because the conditional density of Zt given fZt�1;Zt�2; . . .g is uniform (i.e., a constant).
7For a nearly uniformly distributed transformed sequence fZtg, the data in the boundary region are still about

10% when the sample size is 5000.
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kernel used by Chapman and Pearson (2000) to eliminate boundary bias. The jackknife
kernel may generate negative density estimates and has relatively large variances for
the kernel estimates in the boundary regions, which could result in poor finite sample
performance. In contrast, our modified kernel always produces nonnegative density
estimates with a smaller variance in the boundary regions than a jackknife kernel.

Extending Hong and Li’s (2005) in-sample specification test for a continuous-time
model, we obtain the test statistic for out-of-sample density forecasts

Q̂ðjÞ � ðn� jÞh

Z 1

0

Z 1

0

½ĝjðz1; z2Þ � 1�2 dz1 dz2 � hA0
h

� �	
V

1=2
0 ; j ¼ 1; 2; . . . , (2.4)

where the nonstochastic centering and scaling factors

A0
h � ðh

�1
� 2Þ

Z 1

�1

k2
ðuÞduþ 2

Z 1

0

Z b

�1

k2
bðuÞdudb

� �2
� 1,

V0 � 2

Z 1

�1

Z 1

�1

kðuþ vÞkðvÞdv

� �2
du

" #2
,

and kbð�Þ � kð�Þ=
R b

�1 kðvÞdv. Note that the modification of the kernel kð�Þ in the boundary
regions affects the centering constant A0

h.
The use of the Q̂ðjÞ statistics with different j’s can reveal the information on the lag

orders at which we have significant departures from i.i.d. U½0; 1�. However, when
comparing two different models, it is desirable to construct a single portmanteau test
statistic. Otherwise we would run into difficulty when one model has a smaller Q̂ðjÞ at lag j1
but the other model has a smaller Q̂ðjÞ at lag j2aj1. To avoid this, we propose the
following portmanteau evaluation test statistic:

Ŵ ðpÞ ¼
1ffiffiffi
p
p
Xp

j¼1

Q̂ðjÞ, (2.5)

where p is a lag truncation order. This test can be viewed as a generalization of the popular
Box–Pierce–Ljung autocorrelation test from a linear time series in-sample context to a
nonlinear time series out-of-sample context. It can check model misspecifications in not
only the conditional mean but also the entire conditional distribution of Y t.

The derivation of the asymptotic distributions of Q̂ðjÞ and Ŵ ðpÞ is based on the
following regularity conditions. Throughout, we use C to denote a generic bounded
constant, j � j to denote the usual Euclidean norm, and q

qy Ztðy0Þ to denote q
qy ZtðyÞjy¼y0 .

Assumption A.1. The random sample fY tg
T
t¼1 is generated from an unknown conditional

probability density function p0ðyjI t�1; tÞ � q
qy
PðY tpyjI t�1Þ, where I t�1 is an information

set (or sigma-field) at time t� 1.

Assumption A.2. Let Y be a finite-dimensional parameter space. (i) For each y 2 Y,
pðyjI t�1; t; yÞ is a conditional density model for fY tg, and is a measurable function of
ðy; I t�1Þ; (ii) with probability one, pðyjI t�1; t; yÞ is twice-continuously differentiable with

respect to y in a neighborhood Y0 of y0, with limT�R!1 ðT � RÞ�1
PT

t¼Rþ1E supy2Y0

j qqy Ztðy0Þj2npC for some constant n41 and limT�R!1 ðT � RÞ�1
PT

t¼Rþ1E supy2Y0

j q2

qy qy0 Ztðy0Þj2pC, where ZtðyÞ is defined in (2.1).
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Assumption A.3. (i) Gt�1ðzÞ � E½ qqy Ztðy0ÞjZtðy0Þ ¼ z; I t�1� is a measurable function of
ðz; I t�1Þ; (ii) with probability one, Gt�1ðzÞ is continuously differentiable with respect to z,

and limT�R!1 ðT � RÞ�1
PT

t¼Rþ1EjG
0
t�1½Ztðy0Þ�j2pC.

Assumption A.4. fY t; qqy Ztðy0Þg0 is a strong mixing process with strong mixing coefficient

aðjÞ satisfying
P1

j¼0 aðjÞ
ðn�1Þ=npC, where n41 is as in Assumption A.2.

Assumption A.5. ŷR � ŷðfY tg
R
t¼1Þ 2 Y is a parameter estimator based on the first

subsample fY tg
R
t¼1 such that R1=2ðŷR � ynÞ ¼ OPð1Þ, where y

n
� p limR!1 ŷR is an interior

element in Y and yn ¼ y0 under the hypothesis of optimal density forecasts.

Assumption A.6. The kernel function k : ½�1; 1� ! Rþ is a symmetric, bounded, and twice
continuously differentiable probability density such that

R 1
�1 kðuÞdu ¼ 1;

R 1
�1 ukðuÞdu ¼ 0,

and
R 1
�1 u2kðuÞduo1.

Assumption A.7. (i) The bandwidth h ¼ cn�d for c 2 ð0;1Þ and d 2 ð0; 1
5
Þ, where

n � T � R; (ii) nl=R! 0, where lomax½1� d; 1
2
ð1þ 5dÞ; ð5� 2

nÞd�.

Assumption A.1 is a regularity condition on the DGP of fY tg. We allow the functional
form of the conditional density p0ðyjI t�1; tÞ to be time-varying. Assumptions A.2 and A.3 are
regularity conditions on the conditional density model pðyjI t�1; t; yÞ. Assumption A.4

characterizes temporal dependence in fY t; qqy Ztðy0Þg. The strong mixing condition is often

used in nonlinear time series analysis, as is the case here. For the definition of the strong
mixing condition, see (e.g.) White (1984, p. 45). We note that although fZtðy0Þg is i.i.d. when
the density forecast model is optimal, the sequence of its gradients f qqy Ztðy0Þg is generally no

longer i.i.d. Assumption A.5 allows for any in-sample
ffiffiffiffi
R
p

-consistent estimator for y0, which
need not be asymptotically most efficient. Assumption A.6 is a standard regularity condition
on kernel function kð�Þ. Assumption A.7 provides conditions on the bandwidth h and the
relative speed between R and n, the sizes of the estimation sample and the prediction sample,

respectively. We allow the optimal bandwidth rate (e.g., h / n�1=6Þ for bivariate kernel
estimation. Moreover, we allow the size of the prediction sample, n, to be larger or smaller
than or the same as the size of the estimation sample, R. This offers a wide scope of

applicability of our procedure, particularly when the whole sample fY tg
T
t¼1 is relatively small.

Under the above regularity conditions, we have the following asymptotic results for Q̂ðjÞ

and Ŵ ðpÞ:

Theorem 1. Suppose Assumptions A.1–A.7 hold. Then for any fixed integer j40, we have

Q̂ðjÞ!dNð0; 1Þ when density forecasts are optimal.

Proof. See the Appendix.

Theorem 2. Suppose Assumptions A.1–A.7 hold. Then Ŵ ðpÞ!dNð0; 1Þ when density

forecasts are optimal.

Proof. See the Appendix.

Intuitively, Ŵ ðpÞ!dNð0; 1Þ because when the density forecast model is optimal, we have
that Q̂ðiÞ!dNð0; 1Þ, and cov½Q̂ðiÞ; Q̂ðjÞ�!p0 for iaj as R; n!1. Thus, Ŵ ðpÞ is a
normalized sum of approximately i.i.d. Nð0; 1Þ random variables, and so is asymptotically
Nð0; 1Þ.
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To derive the asymptotic power of our tests when the density forecast model is
suboptimal, we impose an additional condition.

Assumption A.8. For each integer j40, the joint density gjðz1; z2Þ of the transformed
random vector fZt;Zt�jg, where Zt � Ztðy

n
Þ and yn is as in Assumption A.5, exists and is

continuously differentiable on ½0; 1�2.

Theorem 3. Suppose Assumptions A.1–A.8 hold. Then (i) ðnhÞ�1Q̂ðjÞ!pV
�1=2
0

R 1
0

R 1
0

½gjðz1; z2Þ � 1�2 dz1 dz2 for any fixed integer j40; (ii) for any sequence of constants

fCn ¼ oðnhÞg, P½Ŵ ðpÞ4Cn� ! 1 whenever Zt and Zt�j are not independent or U½0; 1� at

some lag j 2 f1; 2; . . . ; pg.

Proof. See the Appendix.

Theorem 3 suggests that as long as model misspecification occurs such that Q̂ðjÞ ! 1 at
some lag j 2 f1; 2; . . . ; pg, we have Ŵ ðpÞ ! 1 in probability. Therefore, Ŵ ðpÞ can be used
as an omnibus evaluation procedure for density forecasts.8

In fact, our asymptotic theory can be extended to the following general divergence
measure which includes the quadratic form as a special case:

D̂ðjÞ ¼

Z
C½ĝjðz1; z2Þ; 1�dz1 dz2,

where Cðf 1; f 2Þ is a divergence measure for two bivariate probability densities f 1ðz1; z2Þ and
f 2ðz1; z2Þ such that Cðf 1; f 2Þ ¼ 0; qCðf 1; f 2Þ=qf 1 ¼ 0, and q2Cðf 1; f 2Þ=qf 2

1 ¼ wðz1; z2Þa0.
Examples of Cðf 1; f 2Þ include the quadratic form

Cðf 1; f 2Þ ¼ ½f 1ðz1; z2Þ � f 2ðz1; z2Þ�
2,

the Hellinger distance

Cðf 1; f 2Þ ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1ðz1; z2Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðz1; z2Þ

p
�2,

and the Kullback–Leibler information criterion

Cðf 1; f 2Þ ¼ ln½f 1ðz1; z2Þ=f 2ðz1; z2Þ�.

For this class of divergence measures, we can construct test statistics similar to Q̂ðjÞ and
Ŵ ðjÞ under the same set of regularity conditions.9

The model generalized residuals fẐtg contain rich information on potential sources of
model misspecifications and can be used for diagnostic analysis. For example, the U½0; 1�
property of the generalized residual measures how well a density forecast model captures
the marginal density of fY tg, while the i.i.d. property of the generalized residuals measures
how well a density forecast model captures the dynamics of fY tg. Here, we also extend a
8We note that one could also consider a chi-square test, such as CðpÞ ¼
Pp

j¼1Q̂
2
ðjÞ. This statistic is

asymptotically w2p when the density forecast model is optimal. However, we expect it to be less powerful than

W ðpÞ, because the latter exploits the one-sided nature of the Q̂ðjÞ statistic under the alternative hypothesis (i.e.,

Q̂ðjÞ diverges to positive infinity under suboptimal density forecasts).
9We emphasize that our tests compare the relative performance between any two models based on their

distances to the true DGP. To compare the relative performance between two potentially misspecified models

directly, we need to develop a test similar to that of Diebold and Mariano (1995) or Giacomini and White (2003).

The derivation of the asymptotic distribution for such a test statistic is not trivial in the present context, because

nonparametric estimation is involved. The approach by Corradi and Swanson (2005) is expected to be very useful

here. We leave this to future research.
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class of rigorous in-sample separate inference procedures considered in Hong and Li (2005)
to the out-of-sample setting. Specifically, we consider the following test statistics:

Mðm; lÞ �
Xn�1
j¼1

w2ðj=pÞðn� jÞr̂2mlðjÞ �
Xn�1
j¼1

w2ðj=pÞ

" # Xn�2
j¼1

w4ðj=pÞ

" #,
, (2.6)

where r̂mlðjÞ is the sample cross-correlation between Ẑ
m

t and Ẑ
l

t�jjj, and wð�Þ is a weighting
function for lag order j.10 The Mðm; lÞ test is an out-of-sample extension of Hong’s (1996)
spectral density tests for the adequacy of linear time series models. Extending the proof of
Hong (1996), we can show that for each given pair of positive integers ðm; lÞ,

Mðm; lÞ!dNð0; 1Þ

under the null hypothesis of optimal density forecasts, provided the lag truncation order
p � pðnÞ ! 1; p=n! 0. Moreover, parameter estimation uncertainty in ŷR has no impact
on the asymptotic distribution of Mðm; lÞ. Although the moments of the generalized
residuals fZtg are not exactly the same as that of the original time series fY tg, they are
highly correlated. In particular, the choice of ðm; lÞ ¼ ð1; 1Þ; ð2; 2Þ; ð3; 3Þ; ð4; 4Þ is very
sensitive to autocorrelations in level, volatility, skewness, and kurtosis of fY tg, respectively
(see, e.g., Diebold et al., 1998). Furthermore, the choice of ðm; lÞ ¼ ð1; 2Þ and ð2; 1Þ is
sensitive to ARCH-in-mean and leverage effects of fY tg, respectively. Different choices of
orders ðm; lÞ can thus examine various dynamic aspects of the underlying process fY tg.
Like Q̂ðjÞ and Ŵ ðpÞ, upper-tailed N(0,1) critical values are suitable for Mðm; lÞ.

3. Finite sample performances

3.1. A simple and distribution-free correction for finite sample bias

We now study the finite sample performances of the Q̂ðjÞ and Ŵ ðpÞ tests for density
forecasts, using some nonlinear time series models to be used in our empirical study. Hong
and Li (2005) show that the in-sample Q̂ðjÞ test has excellent finite sample performance for
both univariate and multivariate continuous-time models: The test has excellent size and
power performances for a sample size as small as 250. However, we find that for density
forecasts, both tests, especially Ŵ ðpÞ, tend to overreject the null hypothesis when
asymptotic critical values are used. For example, the rejection rates of Ŵ ðpÞ can be about
20% (10%) at the 10% (5%) significance level even for n ¼ 1000. The fact that the out-of-
sample generalized residuals are computed based on the parameter estimates obtained
from the in-sample observations could generate larger variations in Q̂ðjÞ and Ŵ ðpÞ in finite
samples, which could lead to the observed overrejection. Moreover, although fQ̂ðjÞg should
be independent from each other asymptotically, we find nontrivial correlations among
Q̂ðjÞ’s in finite samples. As a result, the asymptotic distribution of Ŵ ðpÞ tends to
underestimate the finite sample variance of the test statistic and thus leads to overrejection.
10We assume that wð�Þ is symmetric around 0 and continuous on the real line except for a finite number of

points. An example is the Bartlett kernel wðzÞ ¼ ð1� jzjÞ1ðjzjp1Þ. If wð�Þ has bounded support, p is a lag

truncation order; if wð�Þ has unbounded support, all n� 1 lags in the prediction sample are used. Usually wð�Þ

discounts higher order lags. This will give better power than equal weighting when jrmlðjÞj decays to zero as lag

order j increases. This is typically the case for most financial markets, where more recent events tend to have

bigger impact than remote past events.
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To deal with this issue, we propose a simple and distribution-free method for correcting
the finite sample biases of the proposed tests. Based on the fact that the generalized
residuals of an optimal density forecast model follow i.i.d. U½0; 1�, we can obtain critical
values of Q̂ðjÞ and Ŵ ðpÞ by using simulated i.i.d. U½0; 1� random variables. Specifically, the
method can be described as follows:
�

1

est

esp

rel
Step 1: For each forecast sample size n, generate B (a large number) data sets from the
i.i.d. U½0; 1� random sample of size n. That is, for b ¼ 1; 2; . . . ;B, we generate fZðbÞt g

n
i¼1�

i.i.d. U½0; 1�.

�
 Step 2: For each simulated data set fZ

ðbÞ
t g

n
t¼1; b ¼ 1; 2; . . . ;B, compute the test statistics

Q̂
ðbÞ
ðjÞ and Ŵ

ðbÞ
ðpÞ. A set of simulated test statistics fQ̂

ðbÞ
ðjÞ; Ŵ

ðbÞ
ðpÞgBb¼1 is obtained.
�
 Step 3: The critical values QaðjÞ and W aðpÞ for Q̂ðjÞ and Ŵ ðpÞ at significance level
a 2 ð0; 1Þ are defined as, respectively,

1

B

XB

b¼1

1fQ̂
ðbÞ
ðjÞ4QaðjÞg ¼ a and

1

B

XB

b¼1

1fŴ
ðbÞ
ðpÞ4W aðpÞg ¼ a,

where 1f�g is an indicator function.

�
 Step 4: Reject the null hypothesis of optimal density forecasts at significance level a if

Q̂ðjÞ4QaðjÞ or Ŵ ðpÞ4W aðpÞ.

The critical values obtained this way are exact finite sample critical values for Q̂ðjÞ and Ŵ ðpÞ

if the true parameter value y0 were used in computing the generalized residuals. When a
ffiffiffiffi
R
p

-
consistent estimator ŷR rather than y0 is used, the obtained critical values are not exact finite
sample critical values for Q̂ðjÞ and Ŵ ðjÞ, due to the impact of parameter estimation uncertainty
in ŷR. Nevertheless, Theorem A.2 of the Appendix shows that parameter estimation uncertainty
in ŷR has no impact on the asymptotic distribution of Q̂ðjÞ and so Ŵ ðpÞ as well; that is, the
asymptotic distributions of Q̂ðjÞ and Ŵ ðpÞ remain unchanged when y0 is replaced with ŷR. As a
result, the critical values obtained from the above simulation procedure are asymptotically valid
for Q̂ðjÞ and Ŵ ðpÞ, and so can be used in practice. This method is very easy to implement and is
distribution-free. In a simulation study below, we examine the impact of parameter estimation
uncertainty in ŷR on this procedure. We find that the simulated critical values provide (i) much
better finite sample approximations than the asymptotic critical values and (ii) rather
reasonable finite sample performances when R=nX2 for n as small as 250.11

3.2. Size performances of Q̂ðjÞ and Ŵ ðpÞ

To examine the size performances of Q̂ðjÞ and Ŵ ðpÞ, we consider the following two models:
�
 Random-Walk-Normal Model (RW-N):

Y t ¼ s�t;

�t�i:i:d:Nð0; 1Þ:

(

1One could use bootstrap to obtain more accurate finite sample critical values that take into account parameter

imation uncertainty. However, bootstrap is much more tedious and much more difficult to implement,

ecially in the current out-of-sample and nonlinear setting we consider. See Corradi and Swanson (2007) for

ated issues on bootstrap.
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GARCH-Normal Model (GARCH-N):
�
Y t ¼
ffiffiffiffi
ht

p
�t;

ht ¼ b0 þ ht�1ðb1 þ b2�
2
t�1Þ;

�t�i:i:d:Nð0; 1Þ:

8><
>:
The parameters of each model are the same as the parameter estimates obtained from
the data on Euro/Dollar exchange rates used in our empirical study below. That is,
s ¼ 2:77 and ðb0;b2;b3Þ ¼ ð0:76; 0:77; 0:14Þ. For each model, we simulate 3000 data
sets from the random sample fY tg

T
t¼1, where T ¼ Rþ n. We consider n ¼ 250; 500,

and 1000, and R=n ¼ 1; 2, and 3 for each n. That is, we choose the forecast sample
size n to be 250, 500, and 1000 and the ratio between the estimation and forecast
sample sizes to be 1, 2, and 3. For each random sample, we estimate model para-
meters using the first R observations via the maximum likelihood estimation (MLE)
method and compute model generalized residuals using the n observations in the
prediction sample.
Panel A of Table 1 reports the size performances of Q̂ðjÞ and Ŵ ðpÞ under RW-N and

GARCH-N, using the simulated critical values. One of the most interesting findings from
our simulation studies is that the sample size ratio R=n is crucial for the size performances
of both tests, a feature that is unique to the out-of-sample analysis. For example, when
R=n ¼ 1, both tests overreject the null hypothesis at conventional significance levels even if
we increase the out-of-sample size n from 250 to 1000. The rejection rates for Ŵ ðpÞ at the
10% (5%) level are about 14% (8%) for RW-N, and 16% (10%) for GARCH-N.
However, if we increase R=n to 2 and 3, both tests have reasonable size performances
under both RW-N and GARCH-N when n ¼ 1000. In particular, under RW-N, both tests
have rejection rates very close to significance levels even when the sample size n is as small
as 250.

3.3. Power performances of Q̂ðjÞ and Ŵ ðpÞ

To investigate the power of the Q̂ðjÞ and Ŵ ðpÞ tests, we generate data from three
alternative DGPs and test the null hypothesis that the data are generated from RW-N
using the simulated critical values. The three DGPs are:
�
 GARCH-Normal Model (GARCH-N):

Y t ¼
ffiffiffiffi
ht

p
�t;

ht ¼ b0 þ ht�1ðb1 þ b2�
2
t�1Þ;

�t�i:i:d:Nð0; 1Þ:

8><
>:
�
 Random-Walk-T (RW-T) Model:

Y t ¼ s�t;

�t�i:i:d:

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

r
tðnÞ:

8><
>:
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Regime-Switching-T (RS-T):
�
Y t ¼ sðstÞ�t;

�t�m:d:s:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðstÞ � 2

nðstÞ

r
tðnðstÞÞ;

8><
>:

where st ¼ 1 and 2, and the transition probability between the two regimes is defined in
(4.1) below.

The parameters of each model are the same as the parameter estimates obtained from
the data on Euro/Dollar exchange rates used in our empirical analysis below. That is,
ðb0; b2; b3Þ ¼ ð0:76; 0:77; 0:14Þ, ðs; nÞ ¼ ð2:78; 3:39Þ, ðs1;s2; n1; n2Þ ¼ ð1:81; 3:67; 6:92; 3:88Þ,
and ðc1; c2; d1;d2Þ ¼ ð3:12; 2:76; 0; 0Þ, where c1; c2; d1; d2 are given in (4.1). Again, for each
model, we simulate 3000 data sets of the random sample fY tg

T
t¼1, where T ¼ Rþ n. We

consider n ¼ 250; 500, and 1000, and R=n ¼ 1; 2, and 3 for each n. For each data set, we
estimate an RW-N model via MLE using the first R observations, and based on the
estimated model parameters, we compute the generalized residuals of RW-N using the
remaining n observations. We test whether the null hypothesis of RW-N can be rejected by
comparing the out-of-sample Q̂ðjÞ and Ŵ ðpÞ statistics with their corresponding simulated
critical values.

Among the above three DGPs, GARCH-N is probably the most difficult to distinguish
from RW-N, given that its conditional density is Gaussian. Of course, RW-N ignores
volatility clustering in the data and assumes a constant volatility. The other two models
should be easier to distinguish from RW-N because their conditional densities exhibit
heavy tails due to their Student-t innovations.

Simulation results in Panel B of Table 1 show that both tests have reasonably good
powers under GARCH-N. When n ¼ 250, the rejection rates of both tests are about 40%
(30%) at the 10% (5%) level. When n ¼ 1000, the rejection rates increase to about 60%
(50%) at the 10% (5%) level. For each sample size n, the rejection rates decline a bit as the
ratio R=n increases. Perhaps a longer estimation sample could yield more accurate
estimates of average volatility and thus allow RW-N to mimic GARCH-N better because
both models have Gaussian conditional densities.

Both tests have excellent power under RW-T and RS-T. Even for n ¼ 250, the rejec-
tion rates of both tests at the 5% level are close to 90%. The rejection rates increase
to 1 when the sample size n increases to 500 and 1000. Unlike under GARCH-N,
the rejection rates of both tests become even higher when R=n increases under RW-T and
RS-T.

In summary, with the simulated critical values obtained as described in Section 3.1, both
the Q̂ðjÞ and Ŵ ðpÞ tests have reasonable sizes and powers in finite samples, provided the
sample size ratio R=nX2 (the higher the ratio, the better the sizes).
4. Exchange rate models

We now introduce a wide variety of time series models of exchange rates that we will use
for density forecasts. These models include geometric random walk, GARCH/EGARCH,
jump, regime-switching, and Hansen’s (1994) ARCD models. They represent one (or a
combination) of three different approaches in capturing the leptokurtic distribution of



ARTICLE IN PRESS
Y. Hong et al. / Journal of Econometrics 141 (2007) 736–776752
exchange rates: (i) a Paretian stable or a Student-t distribution which has fatter tails than a
normal distribution; (ii) a conditionally normal distribution with time-varying moments
(e.g., GARCH models); (iii) a mixture of normal distributions with different means or
variances, or a mixture of a normal and jump process.

4.1. Geometric random walk models

The geometric random walk (or lognormal) model has been widely used to capture the
dynamics of financial time series. While it has been documented that the random walk
model outperforms economic structural and time series models in forecasting the
conditional mean of exchange rate changes, whether it also has better density forecasts
is unknown. Let Y t ¼ 100 lnðPt=Pt�1Þ be the relative change of an exchange rate from
period t� 1 to period t, where Pt is the nominal exchange rate at time t. Then the
geometric random walk model with no drift is given by

Y t ¼ s�t;

�t�i:i:d:Nð0; 1Þ or i:i:d:

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

r
tðnÞ:

8><
>:

While the conventional random walk has an i.i.d. normal innovation, we also consider a
Student-t innovation (the degree of freedom n is estimated from data) to check whether
modeling leptokurtosis in exchange rate data can improve density forecasts.

4.2. RiskMetrics models

Various conditional variance models have been proposed to capture volatility clustering
in exchange rate data. For those models, although the conditional distribution is usually
normal, the unconditional distribution has fat tails because of time-varying conditional
variance. In practice, one popular way to model serial dependence in conditional variance
is J.P. Morgan’s (1996) RiskMetrics model in which the conditional variance is a weighted
average of past squared changes:

Y t ¼
ffiffiffiffi
ht

p
�t;

ht ¼ ð1� yÞ
P1

j¼1y
jY 2

t�j ; 0oyo1;

�t�i:i:d:Nð0; 1Þ or i:i:d:

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

r
tðnÞ;

8>>>><
>>>>:

where y governs the persistence of dependence on past volatility. This exponential
smoothing technique is a simple but effective forecasting method in time series analysis.
This model has been widely used in the risk management industry for VaR calculation.

In practice, one typically uses normal innovations for f�tg, with a prespecified value for y.
For example, J.P. Morgan (1996) suggests y ¼ 0:94 for daily financial series. Here, we also
consider a Student-t innovation for f�tg and estimate n and y from data. The RiskMetrics
model allows us to examine the incremental contribution of modeling volatility clustering
to density forecasts.
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4.3. GARCH/EGARCH models

An alternative approach to modeling conditional variance is the ARCH/GARCH
models of Engle (1982) and Bollerslev (1986), which have been very successful in modeling
persistent volatility clustering in financial time series. Like the RiskMetrics model, ARCH/
GARCH models can generate unconditionally leptokurtic distributions, although their
conditional distributions may be normal. Many authors, such as Bollerslev (1986), Engle
and Bollerslev (1986), Baillie and Bollerslev (1989), and Hsieh (1989), have shown that a
GARCH(1,1) model with a Student-t innovation can capture weekly and daily exchange
rates well. To understand the incremental contribution of GARCH effect, we consider the
following GARCH/EGARCH models:

Y t ¼
ffiffiffiffi
ht

p
�t;

ht ¼ b0 þ ht�1ðb1 þ b2�
2
t�1Þ for GARCH; or

ln ht ¼ b0 þ b1 ln ht�1 þ b2ð�t�1 þ b3j�t�1jÞ for EGARCH;

�t�i:i:d:Nð0; 1Þ or i:i:d:

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

r
tðnÞ:

8>>>>>><
>>>>>>:

The EGARCH model, proposed in Nelson (1991), can capture asymmetric behavior in
volatility.

We note that the RiskMetrics model is a special case of GARCH(1,1), with b0 ¼ 0,
b1 ¼ y, and b2 ¼ 1� y. This is essentially an integrated GARCH (1,1) process. Although it
has some undesirable probability properties (see, e.g., Nelson, 1991), the RiskMetrics
model is very popular in financial risk management due to its simplicity and intuitive
appeal.
4.4. Jump models

Various economic shocks, news announcements, and interventions in foreign exchange
markets by monetary authorities could have pronounced effects on exchange rate
movements and generate jumps in exchange rates. Jorion (1988) and Bates (1996) have
shown that Poisson jump models can capture the excess kurtosis of exchange rates and
help improve currency option pricing.

Following Jorion (1988), we consider the following Poisson jump model:

Y t ¼
s�t þ

PNi

i¼1 ln Ji for jump;ffiffiffiffi
ht

p
�t þ

PNi

i¼1 ln Ji for jump-GARCH;

(

ht ¼ b0 þ b1½Y t�1 � EðY t�1jY t�2Þ�
2 þ b2ht�1;

�t�i:i:d:Nð0; 1Þ or i:i:d:

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

r
tðnÞ;

ln Ji�i:i:d: Nð0; d
2
Þ;

Ni�PoissonðlÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

While Jorion (1988) only considers a normal innovation for f�tg, we also consider a
Student-t innovation for the ‘‘smooth’’ part. Thus, we can compare the relative
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contribution of Student-t distribution and jumps in capturing the fat tails of exchange
rates.
The conditional density of the above jump model can be written as

pðyjI t�1Þ ¼
X1
j¼0

lj

j!
e�l

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs2 þ d2jÞ

q exp
�y2

2ðs2 þ d2jÞ


 �

if �t�i:i:d: Nð0; 1Þ, and

pðyjI t�1Þ ¼ e�lf nðyÞ þ
X1
j¼1

lj

j!
e�l
Z 1
�1

fjðy� vÞf nðvÞdv

if �t�i:i:d:
ffiffiffiffiffiffi
n�2
n

q
tðnÞ, where f nðvÞ is the normalized tðnÞ density and fjð�Þ is the Nðmj; d2jÞ

density. Note that the conditional density of the jump model is a mixture of normal and
Student-t distributions, which can easily generate excess kurtosis and heavy tails. We can
also obtain similar expressions for the conditional density of a jump-GARCH model.
It is much more difficult to estimate a jump model with a Student-t innovation than one

with a normal innovation. This is because to calculate the conditional density of fY tg for
the former we need to compute the convolution between a normal and a Student-t
distribution through numerical integration. Furthermore, when we estimate the model via
MLE, for a given small change in parameter values as part of the optimization procedure,
the numerical integration has to be repeated for every single observation.

4.5. ARCD models

In all the above models the conditional density of Y t can be completely captured
by its first two conditional moments. However, in reality the conditional density of Y t

may depend on higher order moments, such as conditional skewness and kurtosis. Thus,
it is important and interesting to examine whether modeling dependence in higher
order moments can help improve density forecasts. The most well-known econometric
model that explicitly accounts for dependence in higher order moments is Hansen’s
(1994) ARCD model. This model generalizes Engle’s (1982) ARCH model by allowing
shape (skewness and kurtosis) parameters of the innovation distribution to depend
upon conditioning past information. This is achieved by using a low-dimensional
generalized skewed Student-t distribution with time-varying parameters. By modeling
serial dependence in higher order moments, Hansen’s ARCD model may provide
additional benefits in forecasting the probability density of exchange rates. We consider the
following ARCD model in which the conditional skewness lt and kurtosis nt follow an
autoregressive process:

Y t ¼
ffiffiffiffi
ht

p
�t � et;

ht ¼ b0 þ ht�1ðb1 þ b2�
2
t�1Þ;

�t�i:i:d:

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

n

r
tðnÞ or m:d:s: ð0; 1Þ with pdf gðzjnt; ltÞ;

nt ¼ bn0 þ bn1et�1 þ bn2e
2
t�1;

lt ¼ bl0 þ bl1et�1 þ bl2e
2
t�1;

(

8>>>>>>>>><
>>>>>>>>>:
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where

gðzjn; lÞ ¼

bc 1þ
1

n� 2

bzþ a

1� l

� �2
 !�ðnþ1Þ=2

; zo� a=b;

bc 1þ
1

n� 2

bzþ a

1� l

� �2
 !�ðnþ1Þ=2

; zX� a=b;

8>>>>>><
>>>>>>:

2ono1; �1olo1, a ¼ 4lcðn�2n�1Þ; b2
¼ 1þ 3l2 � a2, and c ¼

Gðnþ12 Þffiffiffiffiffiffiffiffiffiffi
pðn�2Þ
p

Gðn2Þ
.

Hansen (1994) applies the ARCD models with a conditional Student-t distribution and a
conditional skewed Student-t distribution to the excess returns of one month U.S.
Treasury bill and monthly Dollar/Swiss Franc exchange rates, respectively. He finds that
the autoregressive parameters for the conditional skewness and degree of freedom are all
statistically significant.12

4.6. Markov regime-switching models

Another popular nonlinear time series model that has been widely used to model
exchange rates and other economic variables is Hamilton’s (1989) regime-switching model.
Engel and Hamilton (1990) apply the model to capture the ‘‘long swings’’ in major dollar
exchange rates in the 1970s and 1980s. In their model, exchange rate changes follow a
process governed by an unobservable state variable st, which follows a two-state Markov
chain. When st ¼ 1, Y t�Nðm1; s1Þ, and when st ¼ 2, Y t�Nðm2;s2Þ. Thus, the uncondi-
tional distribution of exchange rate changes is a mixture of two normal distributions with
different means and/or variances. This model can generate unimodal or bimodal
distributions and allows for great flexibility in modeling skewness, kurtosis, and fat tails.
It also can capture part of volatility clustering. Engel and Hamilton (1990) show that this
model outperforms the random walk model in both in-sample fitting and out-of-sample
forecasting. Engel (1994), however, shows that this model does not outperform the random
walk model in forecasting the conditional mean of exchange rate changes for 18 currencies
in terms of mean squared error.

While Engel and Hamilton (1990) and Engel (1994) consider quarterly data, we are
interested in intraday data which might exhibit more significant nonlinear behavior. We extend
their models to include regime-dependent Student-t innovations and GARCH effects:

Y t ¼
sðstÞ�t orffiffiffiffi

ht

p
�t;

(

ht ¼ b0ðstÞ þ b1ðstÞ½Y t�1 � EðY t�1jY t�2Þ�
2 þ b2ðstÞht�1;

�t�i:i:d: Nð0; 1Þ or m:d:s:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðstÞ � 2

nðstÞ

r
tðnðstÞÞ:

8>>>>>>><
>>>>>>>:

We refer to the regime in which st ¼ 1 ðst ¼ 2Þ as the first (second) regime. Following Ang
and Bekaert (1998), we assume that the conditional probability of st depends on the one
12We thank Bruce Hansen for sharing his GAUSS program for estimating ARCD models, which is used in our

empirical analysis.
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period-lagged exchange rate change:

Pðst ¼ ljst�1 ¼ lÞ ¼
1

1þ expð�cl � dlY t�1Þ
; l ¼ 1; 2. (4.1)

Thus, this model allows dependence in higher order moments since the degree of freedom n
depends on the state variable st. It also provides a richer characterization of conditional
volatility by allowing GARCH parameters to depend on st, which could generate
asymmetric behavior in volatility.
As pointed out by Hamilton and Susmel (1994), a regime-switching GARCH model is

intractable due to the dependence of conditional variance on the entire past history of the
data. To avoid such difficulty, we follow Gray (1996) to remove the path dependence
nature of the regime-switching GARCH model by averaging over regimes the conditional
and unconditional variances at each time point. Thus, the conditional density of the
exchange rate change in a regime-switching model is

pðY tjI t�1Þ ¼ pðY tjst ¼ 1; I t�1ÞPðst ¼ 1jI t�1Þ þ PðY tjst ¼ 2; I t�1ÞPðst ¼ 2jI t�1Þ,

where Pðst ¼ ljI t�1Þ, the ex ante probability that Y t is generated from regime l, can be
obtained using a recursive procedure given in Hamilton (1989) and Gray (1996).

5. Empirical results

5.1. Data and estimation method

We consider two intraday high-frequency exchange rates, Euro/Dollar and Yen/Dollar,
from July 1, 2000 to June 30, 2001. Euro and Yen are two of the most important currencies
in the world after the U.S. dollar. The launch of the new currency Euro is probably the
most important event in the history of international monetary and financial system since
the end of the Bretton Woods system in the early 1970s. It has created the world’s second-
largest single currency area after the United States.13 In the foreign exchange market,
Euro/Dollar will surely be the busiest pair of currencies: It is estimated that 40% of the
trading will be between this pair, which is twice as large as the Dollar/DM pair had, and
twice as large as the Yen/Dollar pair has. Thus, understanding the evolution of the Euro/
Dollar exchange rates will be important to many outstanding issues in international
economics and finance. The Japanese economy was in prolonged recession in the last
decade, and, as a result, the Yen/Dollar rate might have very different time series
properties than that of the Euro/Dollar rate.
The data, obtained from Olsen & Associates, are indicative bid and ask quotes posted by

banks. We choose the sample period between July 1, 2000 and June 30, 2001 to wait for the
market to stabilize after the introduction of the Euro as a new currency on January 1, 1999
and to avoid the impact of the disaster of September 11, 2001. Similar to Diebold et al.
(1999), we sample data over a grid of half-hour intervals, i.e., we obtain quotes nearest to
half-hour time stamps. Although currency trading occurs around the clock during
weekdays, trading is very thin during weekends. Following Diebold et al. (1999), we
13The Euro area comprises 12 countries which account for about 16% of global GDP, and has a total

population of 290 million. In comparison, the share of the global output produced in the United States is around

20%, with a slightly smaller population, and the Japanese economy accounts for about 8% of the global GDP,

with a total population of about 130 million.
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eliminate the observations from Friday 21:30 GMT to Sunday 21:00 GMT. Thus, a
trading week is between Sunday 21:30 GMT and Friday 21:00 GMT, and each of the five
trading days spans 21:30 GMT on one day to 21:00 GMT the next day, which implies that
there are 5	 48 ¼ 240 observations for each full week.

We calculate exchange rate changes in the same way as in Andersen and Bollerslev
(1997) and Diebold et al. (1999). We first calculate the average log bid and log ask prices to
get a ‘‘log price,’’ then calculate changes as the difference between log prices at consecutive
time points.14 The autocorrelations of Y 2

t and jY tj show distinct intraday seasonal patterns
(especially those of jY tj). Diebold et al. (1999) argue that calendar effects in volatility occur
because trading is more active at certain times of the day than at others.15 Following
Diebold et al. (1999), we remove the intraday calendar effects in volatility, and the
autocorrelations of the deseasoned returns do not exhibit seasonality in both mean and
variance.16 The histograms of the two exchange rate returns after removing intraday
seasonality show that both exchange rate returns have fatter tails and a higher peak than
the normal distribution. In addition, we find that the return of the Euro/Dollar rate has
much higher kurtosis than that of the Yen/Dollar rate.

We choose the first half of the sample, from 07/01/2000 to 12/31/2000 (with a total of
6214 observations) as the estimation sample. We consider two choices of forecast samples.
One is from 01/01/2001 to 06/30/2001 (with a total of 6214 observations), and the other is
from 01/01/2001 to 03/31/2001 (with a total of 3107 observations). Both choices yield
similar conclusions and we only report and discuss results based on the second choice
because the simulation study in Section 4 has shown that our tests have better finite sample
performances in this case. We first consider in-sample performances of all models; we then
evaluate their out-of-sample density forecasts using our portmanteau test. All models are
estimated via MLE. The optimization algorithm is the well-known BHHH with STEPBT
for step length calculation and is implemented via the constrained optimization code in
GAUSS Window Version 3.6. The optimization tolerance level is set such that the
gradients of the parameters are less than or equal to 10�6.
5.2. In-sample performances

We now examine the in-sample performances of all models for exchange rate dynamics.
We first focus on models with similar structures and then compare the performances of
models across different classes. We examine model performances based on estimated
parameters and likelihood values, as well as the i.i.d. and uniform properties of the in-
sample generalized residuals.17
14To save space, we omit tables and figures that provide summary information of the two exchange rates. These

results are available in Hong et al. (2006).
15For instance, trading is much less active during the Japanese lunch hour, and much more active when U.S.

markets are open.
16Diebold et al. (1999) remove seasonality in volatility as follows. Let rt ¼ st;iZt, where Zt is the unseasoned

portion of the process and st;i is the time-of-day dummy at time t of day i, where i is Monday, Tuesday,..., Friday.

To remove volatility calender effects, Diebold et al. (1999) fit 2 log jrtj ¼ 2 log st;i þ 2 logZt, and use the estimated

time-of-day dummies, suitably normalized so that st;i summed over the entire sample equals 1, to standardize

returns.
17To save space, we do not report parameter estimates and likelihood values. These results are available in

Hong et al. (2006).
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We find that modeling the fat tails of both exchange rates significantly improves the
performances of the random walk models: Models with a Student-t innovation have much
higher likelihood values than corresponding models with a normal innovation. The
estimated degree of freedom n of the Student-t innovation is about 3.3 for Euro and 3.8 for
Yen, consistent with the fact that Euro/Dollar has higher kurtosis than Yen/Dollar. There
is also a predictable component in the conditional mean of both exchange rates: In all
models, the MA(1) coefficients are negative and statistically significant, suggesting that the
exchange rates are mean-reverting.
Next, we examine the performances of RiskMetrics, GARCH, and EGARCH models.

First, similar to the random walk models, it is also important to model fat tails in these
models: RM-T and GARCH/EGARCH-T perform much better than RM-N and
GARCH/EGARCH-N, respectively. The estimated degree of freedom of Euro/Dollar is
again smaller than that of Yen/Dollar. Second, in addition to fat tails, it is important to
model volatility clustering in both exchange rates, and GARCH/EGARCH perform much
better than the RiskMetrics models in this respect. Likelihood ratio tests (not reported)
easily reject those models that ignore volatility clustering. All GARCH parameter
estimates are overwhelmingly significant and the implied GARCH processes are
covariance-stationary, i.e., the sum of GARCH parameter estimates is less than one
(b̂1 þ b̂2 
 0:95, and 0:91, for Euro/Dollar and Yen/Dollar, respectively, in GARCH-T).
Note that the specification of tðnÞ rather than N(0,1) reduces the persistence in volatility
clustering, as can be seen from the sum of b̂1 and b̂2. EGARCH models perform slightly
better than GARCH models, although the asymmetric parameter is not significantly
different from zero.18 Similar to the random walk models, we also find statistically
significant and negative components in the conditional mean of the three classes of models.
Now we examine the performances of jump models with and without GARCH,

respectively. Consistent with Jorion (1988), we find that Jump-N significantly improves
RW-N. We also measure the incremental contribution of jumps beyond Student-t
innovation, an issue not considered in Jorion (1988). For models with normal innovation
and jumps, replacing normal with Student-t innovation further improves model
performances. However, for models with Student-t innovation, introducing jumps
provides no further improvement for Euro/Dollar and only marginal improvement for
Yen/Dollar. It appears that Student-t innovations have provided an adequate description
of the fat tails of both exchange rates that cannot be further improved by including jumps.
Our results indicate that capturing fat tails through Student-t innovation provides the

most significant improvement in model performances. GARCH/EGARCH provide better
characterization of volatility clustering than the RiskMetrics models. Jumps, although they
improve upon models with normal innovation, provide no further contribution beyond
Student-t innovation. Our findings so far are consistent with those of Bollerslev (1987),
Engle and Bollerslev (1986), Baillie and Bollerslev (1989), and Hsieh (1989), who show that
models that best capture daily and weekly exchange rate dynamics are GARCH/
EGARCH-T.
Next we study whether we can further improve model performance by allowing

dependence in higher order moments through Hansen’s (1994) ARCD model and a
18This result may not be surprising because unlike stock returns, currency returns do not exhibit a pronounced

‘‘leverage’’ effect.
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regime-switching model with regime dependent GARCH process and Student-t innova-
tion. For the more complicated models, we use GARCH/EGARCH-T as benchmarks.

We consider ARCD models in which either the degree of freedom nt or the conditional
skewness lt follows an autoregressive process. We do not find significant serial dependence
in nt, so we only consider ARCD models with either unconditional skewness (denoted
ARCD-USkew) or autoregressive conditional skewness (denoted ARCH-Skew). The
ARCD model with time-varying conditional skewness improves the performances
of GARCH/EGARCH-T for both exchange rates. In contrast, the ARCD models
with unconditional skewness, while outperforming GARCH-N, behave almost exactly
the same as GARCH-T. The additional flexibility provided by the unconditional
skewness parameter is almost nonexistent. It seems that there is serial dependence in
higher order moments, especially conditional skewness, but the unconditional skewness is
close to zero.

Introducing regime switching to GARCH-T further improves model performance. This
suggests that regime switching is another important feature of exchange rates besides fat
tails and volatility clustering. The improvement, however, does not seem to come from
modeling higher order moments, because the degrees of freedom in the two regimes turn
out to be not significantly different from each other. Instead, the improvement seems to
come from better modeling of the asymmetric behavior of conditional variance through
regime-dependent GARCH effect: The second regime has much higher volatility and less
persistent dependence in conditional volatility, while the first regime has lower volatility
and more persistent dependence in variance. The estimates of the transition probability
matrix suggest that the first regime is slightly more persistent than the second one.19 There
is also evidence of a predictable component in the conditional mean.

The above results are consistent with the diagnostic analysis based on the i.i.d. and
uniform properties of model generalized residuals. Figs. 1 and 2 contain kernel estimators
of the marginal densities of the generalized residuals of all models for Euro/Dollar and
Yen/Dollar, respectively. Table 2 reports the in-sample separate inference statistics Mðm; lÞ
for Euro/Dollar and Yen/Dollar. It is clear from Figs. 1 and 2 that the generalized
residuals of models with Student-t innovations are much closer to U½0; 1� than those of
models with normal innovations. Jumps also help capture the heavy tails of both exchange
rates. It is interesting that for both currencies, the most sophisticated time series models
can capture the marginal densities of the exchange rate changes pretty well. It is also clear
from Table 2 that most models with volatility clustering can capture the dependence in
conditional variance and kurtosis of both exchange rates reasonably well. The
MAð1Þ=ARð1Þ component in most models substantially reduces the Mð1; 1Þ statistics for
both exchange rates, suggesting that modeling dependence in conditional mean is
important for in-sample performances.

To sum up, our in-sample analysis reveals some interesting stylized facts for the two
intraday exchange rates:
�

1

dep
Consistent with existing studies, it is extremely important to model the fat tails of both
exchange rates and it seems that Student-t distribution does a reasonably good job that
cannot be further improved by jumps.
9Estimates not reported here show that the transition matrix of the Markov state variable does not significantly

end on the level of previous exchange rate changes.
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Fig. 1. Nonparametric marginal densities of the in-sample generalized residuals for Euro/Dollar.
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Fig. 2. Nonparametric marginal densities of the in-sample generalized residuals for Yen/Dollar.

Y. Hong et al. / Journal of Econometrics 141 (2007) 736–776 761



ARTICLE IN PRESS

Table 2

In-sample separate inference statistics

Model M(1,1) M(1,2) M(2,1) M(2,2) M(3,3) M(4,4)

Euro Yen Euro Yen Euro Yen Euro Yen Euro Yen Euro Yen

RW-N 11.87 14.47 1.09 0.61 �0.72 �0.61 71.67 51.76 1.54 4.71 75.35 44.67

MA(1)-RW-N �0.31 2.52 1.32 0.99 �0.60 �0.65 69.76 49.09 1.99 0.64 74.89 42.99

RW-T 14.43 15.81 0.23 �0.54 �1.11 �0.65 60.53 48.42 4.94 8.00 74.35 51.87

MA(1)-RW-T 0.06 2.76 0.60 �0.09 �1.01 �0.59 57.69 44.83 2.62 3.69 71.77 48.77

RM-N 12.41 12.40 0.53 0.57 �0.22 0.09 18.42 23.73 0.95 2.07 12.84 18.91

MA(1)-RM-N 0.29 2.69 0.64 0.97 �0.24 �0.12 17.50 22.73 0.87 0.41 13.34 18.22

RM-T 15.05 13.99 0.34 �0.30 �0.53 �0.11 31.95 22.35 3.92 4.44 31.92 21.44

MA(1)-RM-T 0.13 2.79 0.61 0.26 �0.54 �0.35 29.15 21.26 2.58 4.82 31.05 21.20

GARCH-N 10.13 13.39 0.67 0.53 �0.46 �0.10 0.57 8.87 �0.34 3.12 0.21 4.23

MA(1)-GARCH-N �0.44 2.30 0.79 0.85 �0.35 �0.23 0.59 7.76 1.41 �0.05 0.27 3.69

GARCH-T 12.96 14.79 0.17 �0.59 �0.82 �0.25 0.58 3.62 2.23 5.74 �0.43 1.71

MA(1)-GARCH-T �0.09 2.42 0.40 �0.18 �0.76 �0.31 0.43 2.76 2.57 3.00 �0.21 1.41

EGARCH-N 9.72 13.37 0.65 0.27 �0.41 �1.05 2.54 3.04 �0.25 2.71 0.95 1.58

MA(1)-EGARCH-N �0.40 2.54 0.71 0.55 �0.40 �1.10 2.56 2.14 2.65 �0.22 0.97 1.11

EGARCH-T 12.59 14.72 0.15 �0.66 �0.79 �0.90 1.06 1.45 2.12 5.35 0.12 0.81

MA(1)-EGARCH-T �0.07 2.47 0.32 �0.28 �0.75 �0.94 0.94 0.54 2.58 3.19 0.37 0.30

Jump-N 14.28 15.83 0.38 �0.58 �1.06 �0.61 60.45 48.31 4.71 8.09 73.96 52.04

AR(1)-Jump-N 0.44 3.35 0.62 �0.14 �0.98 �0.54 57.85 44.84 1.87 3.65 71.64 48.76

Jump-T 14.40 15.82 0.43 �0.50 �1.03 �0.76 60.49 48.30 4.94 8.05 74.36 51.75

AR(1)-Jump-T 0.48 3.27 0.64 �0.13 �0.96 �0.65 58.23 45.07 2.00 3.46 72.34 48.70

Jump-GARCH-N 12.58 14.64 0.34 �0.69 �0.77 �0.11 0.33 2.45 1.87 5.54 �0.27 1.60

AR(1)-Jump-ARCH-N 0.16 2.77 0.42 �0.26 �0.73 �0.16 0.20 1.70 1.50 2.53 �0.11 1.29

Jump-GARCH-T 12.94 14.79 0.27 �0.64 �0.79 �0.32 0.49 2.73 2.23 5.70 �0.48 1.33

AR(1)-Jump-ARCH-T 0.32 2.87 0.40 �0.26 �0.74 �0.29 0.29 1.81 2.01 2.70 �0.34 0.87

ARCD-USkew 12.96 14.80 0.17 �0.60 �0.82 �0.29 0.58 3.47 2.24 5.70 �0.44 1.63

MA(1)-ARCD-USkew �0.09 2.48 0.39 �0.18 �0.77 �0.36 0.43 2.61 2.55 3.07 �0.22 1.31

ARCD-Skew 5.17 6.52 �0.48 0.03 �0.81 �0.07 0.28 2.45 2.19 5.88 �0.29 1.64

MA(1)-ARCD-Skew �0.02 2.48 �0.33 0.29 �0.79 �0.15 0.73 2.96 �0.72 0.27 0.04 1.64

RS-T 13.26 14.89 0.19 �0.53 �0.90 �0.38 1.92 2.13 2.78 5.48 1.72 1.66

AR(1)-RS-T 0.48 2.92 0.38 �0.29 �1.00 �0.21 0.31 0.28 0.25 1.88 0.05 0.26

RS-GARCH-T 13.63 14.30 0.23 �0.67 �0.66 �0.35 �0.14 0.03 3.03 4.64 �0.99 0.02

AR(1)-RS-GARCH-T 0.22 2.81 0.48 �0.43 �0.70 �0.18 �0.23 0.02 1.33 1.87 �0.88 �0.12

This table reports the in-sample separate inference statistics Mðm; lÞ for all models. The statistic Mðm; lÞ can be

used to test whether the cross-correlation between the mth and lth moments of fZtg is significantly different from

zero. The choice of ðm; lÞ ¼ ð1; 1Þ, (2,2), (3,3), (4,4) is very sensitive to autocorrelations in mean, variance,

skewness, and kurtosis of fY tg, respectively. The in-sample data are from July 1, 2000 to December 31, 2000, with

a total of 6214 observations. We only show results for lag truncation order p ¼ 20; the results for p ¼ 10 and 30

are similar.
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�
 In addition to fat tails, it is also important to model volatility clustering and its
asymmetric features. The conditional variance exhibits an asymmetric behavior which is
better captured by a regime-switching GARCH model than GARCH/EGARCH and
RiskMetrics models.

�
 Modeling conditional mean and serial dependence in conditional skewness further
improves model performances. However, no significant dependence in conditional
kurtosis is found.
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5.3. Out-of-sample density forecasting performances

Although the more complicated models with conditional mean, conditional hetero-
skedasticity, fat tails, and regime switching have better in-sample fits, previous studies have
shown that they generally underperform the simple random walk model in forecasting the
conditional mean of exchange rate changes. In this section, we apply the tests developed in
Section 2 to examine whether the features found to be important for in-sample fits remain
important for out-of-sample density forecasts, and in particular, whether the random walk
model still dominates all other models in density forecasts.

For each model, we first calculate the generalized residuals using the forecast sample
based on parameter estimates obtained from the estimation sample. Then we calculate the
out-of-sample evaluation statistics Ŵ ðpÞ (p ¼ 5; 10, and 20) and Q̂ðjÞ (j ¼ 1; 10, and 20),
which are reported in Table 3. The simulated critical values with n ¼ 3107 for Q̂ðjÞ are
much closer to the asymptotic ones than those of Ŵ ðpÞ. To demonstrate the robustness of
our results, we report both Q̂ðjÞ and Ŵ ðpÞ statistics, but focus our discussions on Ŵ ðpÞ

because both tests yield very similar conclusions.
For Euro/Dollar, modeling fat tails via Student-t innovations is important for both in-

sample fits and out-of-sample density forecasts. For example, Ŵ ð5Þ declines from 53 for
RW-N to about 23 for RW-T, and Ŵ ð5Þ declines from about 50 (40) for GARCH/
EGARCH-N (RM-N) to about 5 (1.5) for GARCH/EGARCH-T (RM-T). However, for
Yen/Dollar, except for the RiskMetrics models, other models (Random walk, GARCH/
EGARCH) with Student-t innovations generally underperform corresponding models with
a normal innovation in density forecasts.

In addition to fat tails, modeling volatility clustering provides further improvement for
both in-sample and out-of-sample performances. GARCH/EGARCH and RiskMetrics
models with a Student-t innovation have much better density forecasts than the random
walk model with a Student-t innovation. Interestingly, for both exchange rates, RM-T
significantly outperforms GARCH/EGARCH-T in density forecasts, suggesting that the
simple exponential smoothing method of RiskMetrics captures volatility clustering better
than GARCH/EGARCH for the out-of-sample density forecast purpose.20

For Euro/Dollar, similar to in-sample findings, jumps improve the forecasting
performances of models with a normal innovation: Jumps reduce Ŵ ð5Þ from 53 (48) for
RW-N (GARCH-N) to single digits. However, the heavy tails of the Euro/Dollar exchange
rate have already been well captured by Student-t innovation, and jumps provide no
significant improvements in density forecasts. For Yen/Dollar, jumps actually worsen out-
of-sample forecasting performances even for RW-N and GARCH-N models. The in-
sample evidence shows that jump models have a significant predictable component in
mean. However, including an MA or AR component in jump models adversely affects the
out-of-sample forecasting performance.

Our analysis so far shows that for both exchange rates, RM-T has the best density
forecasts. Next we consider whether we can further improve density forecasts by modeling
dependence in higher order moments in the form of ARCD and regime-switching models.
Although the ARCD models with time varying conditional skewness have slightly better
in-sample fits than GARCH-T, they perform slightly worse in out-of-sample density
20However, we need to point out that this result is not very robust for Euro/Dollar. When R=n ¼ 1, GARCH/

EGARCH-T outperforms RM-T. This is the only material difference between the results for R=n ¼ 1 and 2.
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Table 3

Density forecast evaluation statistics W ðpÞ and QðjÞ

Model W ð5Þ W ð10Þ W ð20Þ Qð1Þ Qð10Þ Qð20Þ

Euro Yen Euro Yen Euro Yen Euro Yen Euro Yen Euro Yen

RW-N 53.1 65.57 72.44 91.57 100.8 126.00 25.27 30.82 21.46 27.02 20.93 27.19

MA(1)-RW-N 55.02 68.30 75.97 96.14 105.6 131.70 25.41 31.73 23.97 28.44 22.19 28.61

RW-T 23.3 193.20 31.49 270.10 42.37 372.80 11.11 88.24 9.857 81.63 7.896 78.09

MA(1)-RW-T 27.96 203.10 38.99 283.90 52.34 389.90 14.41 93.79 13.31 86.05 11.42 79.72

RM-N 39.62 57.04 54.5 79.26 76.29 108.90 17.79 27.33 16.43 24.11 17.78 22.35

MA(1)-RM-N 42.17 59.81 58.18 82.97 81.06 114.00 18.69 28.83 17.4 24.56 17.77 22.97

RM-T 1.568 4.90 1.911 6.78 2.481 8.77 0.9958 3.206 �0.2157 1.581 �0.5106 1.827

MA(1)-RM-T 4.226 5.55 6.128 8.17 8.201 10.03 3.287 4.559 1.022 1.682 1.223 1.602

GARCH-N 48.68 23.76 68.18 33.69 97.21 47.23 21.38 10.82 21.18 9.752 21.57 10.58

MA(1)-GARCH-N 51.11 24.16 71.74 35.01 100.4 49.60 22.14 11.1 22.46 10.11 21.37 10.58

GARCH-T 7.454 45.15 10.13 64.85 14.4 92.14 2.212 20.11 2.617 19.83 2.666 19.87

MA(1)-GARCH-T 11.69 48.44 16.34 69.89 21.75 98.72 5.23 22.52 4.998 21.76 4.384 20.6

EGARCH-N 50.23 22.71 70.36 32.44 100.7 46.58 21.87 10.19 21.82 9.039 22.24 10.75

MA(1)-EGARCH-N 52.08 23.07 73.29 33.48 103.8 48.21 22.61 10.23 22.67 9.399 22.18 10.81

EGARCH-T 5.154 51.04 6.934 73.34 9.83 104.30 1.083 22.98 1.359 22.2 1.127 22.88

MA(1)-EGARCH-T 8.56 54.39 12.03 78.05 15.92 110.60 3.599 25.64 3.466 23.92 2.793 23.59

Jump-N 23.99 183.40 32.5 256.40 43.74 353.90 11.26 83.95 10.34 77.53 8.311 74.11

AR(1)-Jump-N 28.09 187.90 39.28 262.40 52.83 360.30 14.25 86.47 13.57 79.75 11.6 73.66

Jump-T 23.21 177.20 31.4 247.70 42.22 341.70 11.08 81.18 9.86 74.73 7.848 71.81

AR(1)-Jump-T 26.69 186.30 37.39 260.20 50.31 357.20 13.56 85.64 12.74 78.89 10.99 73.42

Jump-GARCH-N 8.575 57.18 11.39 82.33 16.24 117.30 2.629 25.39 3.111 25.4 3.233 25.38

AR(1)-Jump-ARCH-N 10.81 61.16 15.27 88.37 20.8 125.30 3.974 27.76 4.767 27.74 4.417 26.53

Jump-GARCH-T 7.238 47.27 9.851 67.85 14.01 96.43 2.125 21.13 2.593 20.7 2.523 20.85

AR(1)-Jump-ARCH-T 11.12 50.33 15.59 72.59 20.84 102.60 4.743 22.95 4.74 22.46 4.119 21.64

ARCD-USkew 7.598 46.10 10.35 66.22 14.69 94.25 2.275 20.7 2.671 20.28 2.715 20.38

MA(1)-ARCD-USkew 11.8 49.51 16.51 71.46 21.96 100.90 5.282 23.15 5.066 22.22 4.432 21.13

ARCD-Skew 8.357 46.20 11.13 66.76 14.94 94.76 2.796 20.81 2.756 19.99 2.763 19.45

MA(1)-ARCD-Skew 11.72 47.47 16.01 68.52 21.61 96.77 5.359 21.77 4.583 20.99 4.404 19.84

RS-T 4.254 72.18 6.126 102.60 8.457 143.80 1.179 32.93 1.691 30.9 0.4301 31.42

AR(1)-RS-T 8.355 78.30 11.91 112.20 15.95 157.20 3.214 35.63 3.864 34.61 2.189 33.79

RS-GARCH-T �0.4855 61.35 �0.971 87.87 �1.146 123.80 �0.7883 27.12 �0.1968 26.9 �0.9067 27.5

AR(1)-RS-GARCH-T 0.6355 63.10 0.727 90.83 0.6106 128.40 �0.2752 28.11 0.4112 28.02 �0.4265 27.88

This table reports the evaluation statistics W ðpÞ for the out-of-sample density forecasting performance of the

models estimated in Table 3 using the estimation sample (from July 1, 2000 to December 31, 2001, with a total of

6214 observations). The probability integral transforms are obtained using the forecast sample (from January 1,

2001 to March 31, 2001, with a total of 3107 observations). The finite sample critical values of W ðpÞ are obtained

via simulation. The finite sample critical values at the 5% level for W ðpÞ for R ¼ 6214 and n ¼ 3107 are 3.460,

4.674, and 6.414 for p ¼ 5, 10, and 20, respectively. The finite sample critical values at the 5% level for QðjÞ for

R ¼ 6214 and n ¼ 3107 are 2.160, 2.099, and 2.123 for j ¼ 1, 10, and 20, respectively.
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forecasts. Therefore, modeling dependence in conditional skewness does not necessarily
improve out-of-sample forecasting performances. On the other hand, regime-switching
models improve upon GARCH/EGARCH-T for both in-sample and out-of-sample
performances. The RS-GARCH-T models with and without drift have the best out-of-
sample performances with Ŵ ð5Þ equal to �0:49 and 0.65, respectively, which are not
significant at conventional levels. This suggests that it is important to capture asymmetric
conditional volatility for out-of-sample density forecasts. However, for Yen/Dollar, regime
switching does not improve forecasts when volatility clustering has already been captured
by GARCH or RiskMetrics. Interestingly, it seems that we have found a couple of models
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that adequately capture the conditional density of Euro/Dollar. However, we have not
been able to identify such a model for Yen/Dollar.

Diagnostic analysis based on out-of-sample generalized residuals reveals interesting
sources of model misspecifications. While the in-sample generalized residuals of most
models with Student-t innovations are close to U½0; 1� for both exchange rates, the out-of-
sample residuals are much more nonuniform for most models, and are especially so for
Yen/Dollar. As shown in Fig. 3, for Euro/Dollar, most models with Student-t innovations
have high peaks at both ends of the distribution. The regime-switching models best capture
the uniform property, although their out-of-sample residuals are still not as uniform as the
in-sample ones. As shown in Fig. 4, almost all models have pronounced peaks at both ends
of the distribution, suggesting that all models cannot capture the extreme movements in
the Yen/Dollar exchange rates in the forecast sample.

The out-of-sample separate inference statistics Mðm; lÞ in Table 4 show that models with
GARCH or regime switching can capture the dependence in the conditional variance and
kurtosis of the generalized residuals pretty well. In contrast, the RiskMetrics models do
not perform nearly as well in this regard. Most models with an MAð1Þ or ARð1Þ term tend
to have higher Mð1; 1Þ statistics. This suggests that while modeling the conditional mean
through an MA(1) or AR(1) component is important for in-sample fits, it has adverse
effect on out-of-sample density forecasts for both exchange rates. This is consistent with
the existing results on mean forecasts.

Our analysis shows that some nonlinear time series models have both good in-sample
and out-of-sample performances and they outperform the simple random walk model in
density forecasts. In particular, we obtain the following findings:
�
 Modeling conditional mean and dependence in higher order moments such as
conditional skewness, while important for in-sample performances, does not improve
density forecasts for both exchange rates.

�
 For the Euro/Dollar rate, modeling the heavy tails through a Student-t innovation and
the asymmetric time-varying conditional volatility through a regime-switching GARCH
model improve both in-sample and out-of-sample performances. As a result, a regime-
switching model with a zero conditional mean, a regime-dependent GARCH(1,1)
volatility, and a Student-t innovation has the best density forecasts.

�
 For the Yen/Dollar rate, it is also important to model heavy tails and volatility
clustering for out-of-sample performances. The best density forecasting model is a
RiskMetrics model with a Student-t innovation.

6. Conclusion

It is notoriously difficult to forecast the conditional mean of future changes of exchange
rates. Numerous studies have shown that the simple random walk model outperforms
most structural and time series models in this regard. In this paper we have asked whether
some time series model(s) can outperform the random walk model in forecasting the pro-
bability density of exchange rates. The importance of density forecasts can never be over
emphasized, because in many important economic and financial applications we usually
need to know the entire probability density of exchange rates. Our paper contributes to the
literature by (i) developing a nonparametric portmanteau test for out-of-sample density
forecast evaluation; and (ii) providing probably the first comprehensive empirical study of
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Fig. 3. Nonparametric marginal densities of the out-of-sample generalized residuals for Euro/Dollar.
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Fig. 4. Nonparametric marginal densities of the out-of-sample generalized residuals for Yen/Dollar.
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Table 4

Out-of-sample separate inference statistics

Model M(1,1) M(1,2) M(2,1) M(2,2) M(3,3) M(4,4)

Euro Yen Euro Yen Euro Yen Euro Yen Euro Yen Euro Yen

RW-N 1.22 2.37 �0.82 �0.52 �1.06 �0.08 19.80 20.86 0.97 1.33 16.82 19.37

MA(1)-RW-N 1.25 0.74 �0.69 �0.46 �1.15 �0.14 19.62 21.45 2.18 1.53 16.92 20.06

RW-T 1.26 2.56 �0.41 �0.71 �1.06 �0.15 18.38 20.47 1.35 1.73 18.95 20.62

MA(1)-RW-T 3.09 2.67 �0.19 �0.68 �1.26 �0.23 18.53 21.03 4.54 4.04 19.23 22.15

RM-N 0.06 2.26 �0.59 �0.85 �0.68 0.09 4.87 8.16 0.08 �0.11 3.84 3.62

MA(1)-RM-N 2.04 0.49 �0.42 �0.70 �0.89 �0.03 5.41 8.19 1.77 0.59 4.18 3.87

RM-T 0.53 2.54 �0.69 �0.93 �0.87 �0.07 7.66 9.39 0.37 0.68 6.68 5.61

MA(1)-RM-T 3.98 2.62 �0.43 �0.71 �1.10 �0.13 8.45 9.79 4.59 3.74 7.63 6.66

GARCH-N 0.21 2.25 �0.90 �1.18 �0.59 �0.01 1.52 1.72 0.08 0.82 2.58 �0.09

MA(1)-GARCH-N 1.51 0.83 �0.78 �1.15 �0.78 �0.09 1.38 1.88 1.55 1.85 2.42 0.23

GARCH-T 0.43 2.38 �0.56 �1.23 �0.73 �0.22 0.19 �0.17 0.42 1.38 1.06 �0.76

MA(1)-GARCH-T 3.20 2.95 �0.29 �1.26 �1.02 �0.20 0.35 0.03 3.77 4.81 0.91 �0.45

EGARCH-N 0.12 2.14 �0.87 �1.12 �0.68 �0.35 2.60 �0.29 �0.08 0.89 3.15 �1.02

MA(1)-EGARCH-N 2.14 0.71 �0.73 �1.12 �0.93 �0.36 2.39 �0.28 1.91 1.82 2.95 �0.82

EGARCH-T 0.35 2.33 �0.50 �1.11 �0.76 �0.43 0.73 �0.40 0.27 1.31 1.76 �0.78

MA(1)-EGARCH-T 2.98 3.01 �0.25 �1.17 �1.07 �0.42 0.71 �0.48 3.56 4.87 1.62 �0.63

Jump-N 1.28 2.55 �0.43 �0.74 �1.06 �0.16 18.25 20.64 1.37 1.69 18.71 20.99

AR(1)-Jump-N 2.46 2.64 �0.24 �0.72 �1.22 �0.23 18.04 21.29 3.73 4.24 18.74 22.62

Jump-T 1.26 2.53 �0.43 �0.72 �1.08 �0.19 18.50 20.67 1.34 1.70 19.11 20.91

AR(1)-Jump-T 2.49 2.48 �0.24 �0.69 �1.24 �0.23 18.35 21.21 3.81 4.05 19.15 22.42

Jump-GARCH-N 0.44 2.37 �0.58 �1.19 �0.73 �0.15 0.09 �0.33 0.49 1.40 0.87 �0.88

AR(1)-Jump-ARCH-N 2.17 2.67 �0.37 �1.23 �0.95 �0.18 0.11 �0.26 2.75 4.37 0.70 �0.76

Jump-GARCH-T 0.42 2.37 �0.56 �1.22 �0.72 �0.26 0.17 �0.32 0.39 1.36 1.06 �0.75

AR(1)-Jump-ARCH-T 2.76 2.77 �0.33 �1.26 �0.98 �0.22 0.25 �0.24 3.33 4.62 0.90 �0.66

ARCD-USkew 0.43 2.40 �0.57 �1.24 �0.72 �0.24 0.19 �0.22 0.42 1.37 1.06 �0.75

MA(1)-ARCD-USkew 3.20 2.97 �0.30 �1.27 �1.02 �0.23 0.35 �0.05 3.78 4.87 0.91 �0.45

ARCD-Skew �0.48 0.61 �0.47 �1.28 �0.73 �0.13 0.33 �0.29 0.39 1.72 1.58 �0.52

MA(1)-ARCD-Skew 2.29 2.75 �0.27 �1.16 �0.91 �0.13 0.55 �0.03 1.23 1.81 1.16 �0.66

RS-T 0.44 2.53 �0.46 �0.89 �0.92 �0.32 0.47 1.80 0.27 1.48 1.16 2.30

AR(1)-RS-T 1.69 1.59 �0.17 �0.93 �1.02 �0.26 �0.06 0.97 1.42 2.39 0.89 1.33

RS-GARCH-T 0.48 2.51 �0.64 �0.94 �0.99 �0.23 �0.23 0.22 0.15 1.69 0.17 �0.37

AR(1)-RS-GARCH-T 2.24 1.73 �0.43 �1.04 �1.19 �0.22 �0.32 �0.32 2.37 2.54 �0.04 �0.92

This table reports the in-sample separate inference statistics Mðm; lÞ for all models. The statistic Mðm; lÞ can be

used to test whether the cross-correlation between the mth and lth moments of fZtg is significantly different from

zero. The choice of ðm; lÞ ¼ ð1; 1Þ, (2,2), (3,3), (4,4) is very sensitive to autocorrelations in mean, variance,

skewness, and kurtosis of fY tg, respectively. The out-of-sample data are from January 1, 2001 to March 31, 2001,

with a total of 3107 observations. We only show results for lag truncation order p ¼ 20; the results for p ¼ 10 and

30 are similar.
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the density forecasting performances of a wide variety of time series models for two major
exchange rates.
Our empirical analysis of high-frequency intraday Euro/Dollar and Yen/Dollar

exchange rates shows that some nonlinear time series models do provide better density
forecasts than the simple random walk model. For the Euro/Dollar rate, a regime-
switching model with a zero conditional mean, a regime-dependent GARCH, and a
Student-t innovation provides the best density forecasts for the Euro/Dollar rate. For the
Yen/Dollar rate, while it is also important to model heavy tails and volatility clustering,
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the best density forecasting model is a RiskMetrics model with a Student-t innovation. Our
results strongly suggest that the sophisticated nonlinear time series models that have been
developed in the literature are useful for out-of-sample applications involving the entire
density.

An interesting future study is to compare the relative exchange rate forecast ability
between the best density forecast models documented in this paper and an important class
of dynamic Bayesian models along the lines of Zellner et al. (1991). Dynamic Bayesian
models provide density forecasts which can adapt to the structural changes and regime-
shifts via time-varying parameters and which naturally take into account parameter
uncertainty. They have been proven successful in global macroeconomic forecasting
(Zellner et al., 1991) and exchange rate forecasting (Putnam and Quintana, 1994; Quintana
and Putnam, 1996). Moreover, our out-of-sample density forecast evaluation procedure is
a statistical criterion. It also will be interesting to see whether best density forecast models
selected by this statistical criterion have best economic performance (e.g., in terms of risk-
return criteria) as well. These open issues are left for future research.
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Appendix A. Mathematical appendix
Proof of Theorem 1. Throughout, we put w � ðz1; z2Þ 2 I2, where I � ½0; 1�. Let ~gjðwÞ be
defined in the same way as ĝjðwÞ in (2.2) but with fZtg replacing fẐtg, and let ~QðjÞ be
defined in the same way as Q̂ðjÞ in (2.4) with ~gjðzÞ replacing ĝjðzÞ. We shall prove the
following theorems.

Theorem A.1. Q̂ðjÞ � ~QðjÞ!p0.

Theorem A.2. ~QðjÞ!dNð0; 1Þ.

Proof of Theorem A.1. Put M̂ðjÞ �
R
I2
½ĝjðwÞ � 1�2 dw, and let ~MðjÞ be defined as M̂ðjÞ with

f ~gjðwÞg replacing fĝjðwÞg. We write

M̂ðjÞ � ~MðjÞ ¼

Z
I2
½ĝjðwÞ � ~gjðwÞ�

2 dw

þ 2

Z
I2
½ ~gðwÞ � 1�½ĝðwÞ � ~gðwÞ�dw � D̂1ðjÞ þ 2D̂2ðjÞ. ðA:1Þ

We shall show Proposition A.1 and A.2 below. Throughout, put nj � n� j ¼ T � R� j.

Proposition A.1. njhD̂1ðjÞ!
p0.
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Proposition A.2. njhD̂2ðjÞ!
p0.

To show these propositions, we first state a lemma from Hong and Li (2005, Lemma
A.1).

Lemma A.1. Let Khð�; �Þ be defined in (2.3). Then for m ¼ 0; 1; 2 and lX1,
R 1
0
j qm

qmz2

Khðz1; z2Þj
l dz1pCh1�lðmþ1Þ for all z2 2 ½0; 1� and

R 1
0
j qm

qmz2
Khðz1; z2Þj

l dz2pCh1�lðmþ1Þ for all

z1 2 ½0; 1�.

Proof of Proposition A.1. Put khðw;w0Þ � Khðz1; z01ÞKhðz2; z02Þ � 1 and W jtðyÞ � ½ZtðyÞ;
Zt�jðyÞ�0. By a second order Taylor series expansion, we have

ĝjðwÞ � ~gjðwÞ

¼ ðŷR � y0Þ
0n�1j

XT

t¼Rþjþ1

qkh½w;W jtðy0Þ�
qy

þ
1

2
ðŷR � y0Þ

0n�1j

XT

t¼Rþjþ1

q2kh½w;W jtðȳRÞ�

qy qy0
ðŷR � y0Þ, ðA:2Þ

where ȳR lies between the segment of ŷR and y0. It follows that

D̂1ðjÞ

p2jŷR � y0j2
Z
I2

n�1j

XT

t¼Rþjþ1

qkh½w;W jtðy0Þ�
qy

�����
�����
2

dw

þ jŷR � y0j4
Z
I2

n�1j

XT

t¼Rþjþ1

q2kh½w;W jtðȳÞ�
qy qy0

�����
�����
2

dw

� 2jŷR � y0j2D̂11ðjÞ þ jŷR � y0j4D̂12. ðA:3Þ

Put q
qy k̂hðwÞ � n�1j

PT
t¼Rþjþ1

q
qy kh½w;W jtðy0Þ�. Then

D̂11ðjÞp2

Z
I2

E
qk̂hðwÞ

qy

����
����
2

dwþ 2

Z
I2

qk̂hðwÞ

qy
� E

qk̂hðwÞ

qy

����
����
2

dw � 2D̂1ðjÞ þ 2D̂2ðjÞ. (A.4)

We now compute the order of magnitude for D̂1ðjÞ. Using the identity that

qkh½w;W jtðyÞ�
qy

¼
qKh½z1;ZtðyÞ�

qy
Kh½z2;Zt�jðyÞ� þ Kh½z1;ZtðyÞ�

qKh½z2;Zt�jðyÞ�
qy

, (A.5)

iterated expectations, and EfKh½z1;Ztðy0Þ�jI t�1g ¼ EKh½z1;Ztðy0Þ� ¼ 1 under H0, we have

E
qkh½w;W jtðy0Þ�

qy


 �
¼ E E

qKh½z1;Ztðy0Þ�
qy

jI t�1

� �
Kh½z2;Zt�jðy0Þ�


 �

þ E
qKh½z2;Zt�jðy0Þ�

qy


 �
. ðA:6Þ

Recall Gt�1ðzÞ � Ef½ qqy ZtðyÞ�y¼y0 jZtðy0Þ ¼ z; I t�1g in Assumption A.3. Because

qKh½z1;ZtðyÞ�
qy

¼
qKh½z1;ZtðyÞ�

qZtðyÞ
qZtðyÞ
qy

(A.7)
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and q
qZtðy0Þ

Kh½z1;Ztðy0Þ� is a function of Ztðy0Þ, which is independent of I t�1 under H0, we
have

E
qKh½z1;Ztðy0Þ�

qy
jI t�1


 �
¼

Z 1

0

qKhðz1; zÞ�

qz
Gt�1ðzÞdz

¼ ½Gt�1ðzÞKhðz1; zÞ�
1
0 �

Z 1

0

Khðz1; zÞG
0
t�1ðzÞdz

¼ � G0t�1ðz1Þ þ oð1Þ, ðA:8Þ

where the first equality follows by iterated expectations and the i.i.d. U[0,1] property of
fZtðy0Þg, and the last equality by change of variable z ¼ z1 þ hu and Assumption A.3. For
the last equality, we have used the fact that Gt�1ð0Þ ¼ Gt�1ð1Þ ¼ 0 for all t. It follows from
(A.6) and (A.8) that

E
qkh½w;W jtðy0Þ�

qy


 �
¼ �fE½Gt�1ðz1ÞKhðz2;Zt�jðy0Þ� þ E½Gt�j�1ðz2Þ�g½1þ oð1Þ�.

(A.9)

Hence, for the first term in (A.4), by change of variable and Assumption A.3, we have

D̂1ðjÞ ¼

Z
I2

n�1j

XT

t¼Rþjþ1

E
qkh½w;W jtðy0Þ�

qy

�����
�����
2

dw ¼ Oð1Þ. (A.10)

Next, we consider the second term D̂2ðjÞ in (A.4). From (A.5) and (A.7), we observe that
q
qy kh½w;W jtðy0Þ� is a measurable function of at most fZtðy0Þ; qqy Ztðy0Þ;Zt�jðy0Þ; qqy Zt�jðy0Þg.
Given Assumption A.4 and the fact that Ztðy0Þ is independent of I t�1 under H0,
f qqy kh½w;W jtðy0Þ�g is an a-mixing process with a-mixing coefficient ajðlÞp1 if lpj þ 1 and
ajðlÞ ¼ aðl � j � 1Þ if l4j þ 1 (cf. White, 1984, Proposition 6.1.8, p. 153). By the
Cauchy–Schwarz inequality and a standard a-mixing inequality (Hall and Heyde, 1980,
Corollary A.2, p. 278), we haveZ

I2
E
qk̂hðwÞ

qy
� E

qk̂hðwÞ

qy

����
����
2

dw

p2n�1j

Xn�1
l¼0

XT

t¼Rþlþ1

Z
I2
cov

qkh½w;W jtðy0Þ�
qy

;
qkh½w;W jðt�lÞðy0Þ�

qy


 �
dw

pCn�1j

X1
l¼0

ajðlÞ
n=ðn�1Þ

" #
n�1j

XT

t¼Rþlþ1

Z
I2

E
qkh½w;W jtðy0Þ�

qy

����
����
2n

( )1=n

dw

¼ Oðn�1j jh�6þ2=nÞ, ðA:11Þ

where we made use of the facts that
P1

l¼0ajðlÞ
n=ðn�1ÞpCðj þ 1Þ by Assumption A.4,

and n�1j

PT
t¼Rþjþ1

R
I2
fEjðq=qyÞkh½w;W jtðy0Þ�j2ng1=n dwp2CðnÞh�6þ2=n½n�1j

PT
t¼Rþjþ1Ejðq=qyÞ

Ztðy0Þj2n�1=n by Jensen’s inequality, the Cr-inequality, (A.5), (A.7), Lemma A.1 and
Assumption A.2. It follows from (A.11) and Markov’s inequality that

D̂2ðjÞ ¼ OPðn
�1
j jh�6þ2=nÞ. This, (A.4) and (A.10) imply

D̂11ðjÞ ¼ OPð1þ n�1j jh�6þ2=nÞ. (A.12)
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Next, we consider the second term D̂12 in (A.3). Noting that

q2kh½w;W jtðyÞ�
qy qy0

¼
q2Kh½z1;ZtðyÞ�

qy qy0
Kh½z2;Zt�jðyÞ� þ Kh½z1;ZtðyÞ�

q2Kh½z2;Zt�jðyÞ�
qy qy0

þ 2
qKh½z1;ZtðyÞ�

qy
qKh½z2;Zt�jðyÞ�

qy0
, ðA:13Þ

we write

D̂12ðjÞ

p8

Z
I2

n�1j

XT

t¼Rþjþ1

q2Kh½z1;ZtðyÞ�
qy qy0

Kh½z2;Zt�jðyÞ�

�����
�����
2

dw

þ 8

Z
I2

n�1j

XT

t¼Rþjþ1

Kh½z1;ZtðyÞ�
q2Kh½z2;Zt�jðyÞ�

qy qy0

�����
�����
2

dw

þ 8

Z
I2

n�1j

XT

t¼Rþjþ1

qKh½z1;ZtðyÞ�
qy

qKh½z2;Zt�jðyÞ�
qy0

�����
�����
2

dw

� 8D̂3ðjÞ þ 8D̂4ðjÞ þ 8D̂5ðjÞ. ðA:14Þ

For the first term in (A.14), by the Cauchy–Schwarz inequality, the identity that

q2Kh½z1;ZtðyÞ�
qy qy0

¼
q2Kh½z1;ZtðyÞ�

q2ZtðyÞ

qZtðyÞ
qy

qZtðyÞ
qy0
þ

qKh½z1;ZtðyÞ�
qZtðyÞ

q2ZtðyÞ
qy qy0

, (A.15)

Lemma A.1, and Assumption A.2, we have D̂3ðjÞ ¼ OPðh
�6
Þ and D̂4ðjÞ ¼ OPðh

�6
Þ. For

D̂5ðjÞ, we have D̂5ðjÞpfn�1j

PT
t¼Rþ1

R 1
0
j qqy Kh½z1;ZtðyÞ�j2dz1g

2 ¼ Oðh�6Þ by the Cauchy–Sch-

warz inequality, (A.7), Lemma A.1, and Assumption A.2. It follows from (A.14) that

D̂12ðjÞ ¼ OPðh
�6
Þ. This, (A.3), (A.12), and Assumptions A.5 and A.7 imply D̂1ðjÞ ¼

OPðR
�1 þ R�1n�1j jh�6þ2=n þ R�2h�6Þ ¼ oPðn

�1
j h�1Þ for any fixed j40. The proof of

Proposition A.1 is finished. &

Proof of Proposition A.2. Using (A.2), we have

D̂2ðjÞ ¼ ðŷR � y0Þ
0

Z
I2
½ ~gjðwÞ � 1�n�1j

XT

t¼Rþjþ1

qkh½w;W jtðy0Þ�
qy

dw

þ
1

2
ðŷR � y0Þ

0

Z
I2
½ ~gjðwÞ � 1�n�1j

XT

t¼Rþjþ1

q2kh½w;W jtðȳRÞ�

qy qy0
dwðŷR � y0Þ

� ðŷR � y0Þ
0D̂21ðjÞ þ

1

2
ðŷR � y0Þ

0D̂22ðjÞðŷR � y0Þ. ðA:16Þ

We first consider D̂21ðjÞ. Recall the definition of q
qy k̂ðwÞ as used in (A.4). We have

D̂21ðjÞ ¼

Z
I2
E
qk̂hðwÞ

qy
½ ~gjðwÞ � 1�dwþ

Z
I2

qk̂hðwÞ

qy
� E

qk̂hðwÞ

qy

� �
½ ~gjðwÞ � 1�dw

� D̂6ðjÞ þ D̂7ðjÞ. ðA:17Þ
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We write D̂6ðjÞ ¼ n�1j

PT
t¼Rþjþ1D6htðjÞ, where D6htðjÞ �

R
I2
khðw;W jtÞE½

q
qy khðw;W jtÞ�dw is a

j-dependent process with zero mean given Ekh½w;W jtðy0Þ� ¼ 0 under H0. Because

Efkh½w;W jtðy0Þ�kh½w;W jsðy0Þ�g ¼ 0 unless t ¼ s; s� j, we have EjD̂6ðjÞj
2p3n�1j

PT
t¼Rþjþ1

EjD6htðjÞj
2 ¼ Oðn�1j Þ by (A.9), change of variable, and Assumption A.3. Thus, we have

D̂6ðjÞ ¼ OPðn
�1=2
j Þ.

For the second term in (A.17), by the Cauchy–Schwarz inequality, (A.11), Markov’s
inequality, and supz2I2 j ~gjðwÞ � 1j ¼ OPðn

�1=2
j h�1 lnðnjÞÞ as follows from a standard uniform

convergence argument for kernel density estimation with application of Bernstein’s large
deviation inequality, we have D̂7ðjÞ ¼ OPðn

�1
j j1=2h�4þ1=n lnðnjÞÞ. It follows from (A.17) that

D̂21ðjÞ ¼ OPðn
�1=2
j þ n�1j j1=2h�4þ1=n lnðnjÞÞ. (A.18)

Next, we consider the second term D̂22ðjÞ in (A.16). Using (A.13), we have

D̂22ðjÞ ¼

Z
I2
½ ~gjðwÞ � 1� n�1j

XT

t¼Rþjþ1

q2Kh½z1;ZtðȳRÞ�

qy qy0
Kh½z2;Zt�jðȳÞ�

( )
dw

þ

Z
I2
½ ~gjðwÞ � 1� n�1j

XT

t¼Rþjþ1

Kh½z1;ZtðȳRÞ�
q2Kh½z2;Zt�jðȳÞ�

qy qy0

( )
dw

þ 2

Z
I2
½ ~gjðwÞ � 1� n�1j

XT

t¼Rþjþ1

qKh½z1;ZtðȳRÞ�

qy
qKh½z2;Zt�jðȳÞ�

qy0

( )
dw

� D̂8ðjÞ þ D̂9ðjÞ þ 2D̂10ðjÞ. ðA:19Þ

For the first term in (A.19), using (A.15), Lemma A.1, and Assumption A.2, we

have jD̂8ðjÞjpsupw2I2 j ~gðwÞ � 1jn�1j

PT
t¼Rþjþ1

R 1
0 jðq

2=qy qy0ÞKh½z1;ZtðȳRÞ�dz1
R 1
0 Kh½z2;Zt�j

ðȳRÞ�dz2 ¼ OPðn
�1=2
j h�3 lnðnjÞÞ. Similarly, we can show D̂9ðjÞ ¼ OPðn

�1=2
j h�3 lnðnjÞÞ. We

also have D̂10ðjÞ ¼ OPðn
�1=2
j h�3 lnðnjÞÞ by (A.7), Lemma A.1, and Assumption A.2. It

follows from (A.19) that D̂22ðjÞ ¼ OPðn
�1=2
j h�3 lnðnjÞÞ. This, (A.16), (A.18), Assumptions

A.5 and A.7, and the fact that j is a fixed lag order imply D̂2ðjÞ ¼ OPðR
�1=2n

�1=2
j þ

R�1=2n�1j j1=2h�4þ1=n lnðnjÞ þ R�1n
�1=2
j h�3 lnðnjÞÞ ¼ oPðn

�1
j h�1Þ. &

Proof of Theorem A.2. See Hong and Li (2005, Theorem A.2). &

Proof of Theorem 2. Let l � ðl1; . . . ; lpÞ
0 be a p	 1 vector such that l0l ¼ 1. Define

Q̂l �
Pp

c¼1lcQ̂ðjcÞ, where j1; . . . ; jp are distinct integers. Following reasoning analogous to

that for Theorem A.1, we can show Q̂l ¼
Pp

c¼1lc
~QðjcÞ þ oPð1Þ for any given p. Moreover,

following reasoning analogous to Hong and Li (2005, Theorem A.2), we can showPp
j¼1lj

~QðjÞ!dNð0; 1Þ given l0l ¼ 1. It follows that Q̂l!
dNð0; 1Þ. The desired result for

W ðpÞ follows immediately by setting l ¼ ð1=
ffiffiffi
p
p

; . . . ; 1=
ffiffiffi
p
p
Þ
0. &

Proof of Theorem 3. Put MðjÞ �
R
I2
½gjðwÞ � 1�2 dw, and recall M̂ðjÞ �

R
I2
½ĝjðwÞ � 1�2 dw.

Then

M̂ðjÞ �MðjÞ ¼

Z
I2
½ĝjðwÞ � gjðwÞ�

2 dwþ 2

Z
I2
½ĝjðwÞ � gjðwÞ�½gjðwÞ � 1�dw. (A.20)
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We shall show M̂ðjÞ �MðjÞ!p0. Note that
R
I2
½ĝjðwÞ � gjðwÞ�

2 dwp2
R
I2
½ĝjðwÞ�

~gjðwÞ�
2dwþ 2

R
I2
½ ~gjðwÞ � gjðwÞ�

2dw. For the first term, we have
R
I2
½ĝjðwÞ � ~gjðwÞ�

2dw!p0

following reasoning analogous to that of Theorem A.1. For the second term, from the

proof of Hong and Li (2005, proof of Theorem 3), we have
R
I2
½ ~gjðwÞ � gjðwÞ�

2 dw ¼

OPðn
�1
j h�2 þ h2

Þ, where the Oðh2
Þ term is the squared bias given Assumption A.8. It

follows that
R
I2
½ĝjðwÞ � gjðwÞ�

2 dw!p0 given Assumption A.7. We thus have M̂ðjÞ �

MðjÞ!p0 by the Cauchy–Schwarz inequality and (A.20).Moreover, given ðnjhÞ
�1A0

h ¼

Oðn�1j h�3Þ ¼ oð1Þ, we have ðnjhÞ
�1Q̂ðjÞ ¼ V

�1=2
0 MðjÞ þ oPð1Þ for any given j. It follows that

P½Q̂ðjÞ4Cn� ! 1 for any Cn ¼ oðnhÞ if MðjÞ40, which holds when fZt;Zt�jg are not

independent or U[0,1]. Therefore, P½Ŵ ðpÞ4Cn� ! 1 for any fixed p40 whenever

P½Q̂ðjÞ4Cn� ! 1 at some lag j 2 f1; . . . ; pg. &
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